Géoazur_recherche
LisAlps - Explorer la lithosphère alpine en 3D par inversion de formes d'ondes des données télésismiques AlpArray - ANR 2021
Probing the 3D Alpine lithosphere by Full Waveform Inversion of the AlpArray teleseismic data
NILAFAR - Quantifier les fluctuations hydrologiques, documenter leurs conséquences sur les communautés humaines passées - ANR PRC 2021
The NILe and AFAR regions: hydrologic changes and impact on human adaptation in the last 20,000 years
EARLI - Détection de signaux sismiques précoces en utilisant l'intelligence artificielle - ERC 2021
Detection od Early seismic signal using ARtificial Intelligence
WIND - Inversion de formes d'ondes - Consortium Pétrolier 2020
Waveform Inversion of Node Data
S5 - Séismes Lents & Essaims Sismiques - ANR 2019
Synchronous Slow Slip & Seismic Swarm
MARACAS - Les terrasses marines comme proxy pour l’appréhension de l’aléa sismique - ANR JC 2018
MARine terraces alonf the northern Andean Coast as a proxy for seismic hazard ASsessment
Et aussi...
All the labs former projects
Depuis 2003, les éphémérides planétaires européennes INPOP développées en collaboration à l'Observatoire de la Côte d'Azur (Géoazur) et l'observatoire de Paris (IMCCE) sont une référence mondiale et ont permis en 2016 de déterminer la position probable de la 9ième planète du système solaire.
Grâce aux perturbations induites par cette planète encore non observée depuis la terre sur l'orbite de Satune, A. Fienga, J. Laskar et leurs équipes ont pu délimiter la zone de l'espace qui pourrait abriter la dernière planète géante de notre système solaire.
Cette planète grosse comme 10 fois la masse de la terre avait été proposée par (Batygin and Brown 2016) comme pouvant expliquer la distribution très particulière des objets de Kuiper observés depuis plusieurs années. Or jusqu'à présent aucun objet aussi massif n'a été observé à une distance de 700 unités astronomiques comme cela a été proposé par (Batygin and Brown 2016). Pour permettre de reproduire la distribution observée des objets de Kuiper, l'orbite de cette planète doit être très excentrique (e=0.6) et inclinée (i=30) mais aucune contrainte sur la position actuelle de l'objet n'est proposée par l'étude de (Batygin and Brown 2016).
Le projet REMAKE, soutenu par l'ANR, propose le développement d’un modèle de prédiction probabiliste des forts séismes en Equateur et au Nord-Pérou, une région régulièrement frappée par des séismes destructeurs comme celui de Pedernales le 16 Avril 2016. L’originalité de l'approche est d’intégrer l’ensemble des connaissances sur la zone - tectoniques, sismologiques, géodésiques, sociétales -, pour quantifier le potentiel sismogène des principales failles et anticiper les risques sociétaux et environnementaux.
Image : Ville de Quito
Le projet SISMED a pour objectif de caractériser un système majeur de failles sismiques situé en Méditerranée (Grèce), grâce à une campagne d’imagerie sismique réalisée par le navire de recherche océanographique américain ultra sophistiqué, le R/V Marcus Langseth. Cette opération à bord de ce navire américain sera une première en Europe. Les travaux de recherche du projet SISMED contribueront à la prévention des risques sismiques et des risques liés aux tsunamis en Grèce et sur le pourtour méditerranéen.