Flagship Research Projects

logo EARLINatural hazards such as earthquakes are difficult to predict. Dramatic developments in the field of artificial intelligence (AI), however, are paving the way for anticipating destructive events. The EU-funded EARLI project will use AI to identify weak, early seismic signals to both speed up early warning and explore the possibility of earthquake prediction. Specifically, it will implement an early-warning approach based on a newly identified signal, caused by the perturbation of the gravity field generated by an earthquake, which is ~6 orders of magnitude smaller than seismic waves (strongly limiting its detection with standard techniques), but precedes them. The second, more exploratory, objective will be to adapt the developed AI algorithm to search for even earlier signals preceding the origin of large earthquakes.

WIND IconThe WIND projet aims to develop seismic imaging methods which are more specifically devoted to stationary-recording acquisitions involving sparse arrays of autonomous stations (ocean bottom seismometers or land stations). The fact that the receiver layout is fixed gives the necessary versatility to design acquisition geometries involving large source-receiver offsets and wide azimuths such that waves can interact with subsurface heterogeneities in a varied manner by trasmission, reflection and diffraction. The rich angular illumination of the subsurface resulting from these acquisition geometries provides a suitable framework for high-resolution multi-parameter imaging provided the imaging techniques manage to assimilate the information content of the seismic data. In this context, we develop the so-called Full Waveform Inversion (FWI) method that aims to reconstruct the subsurface properties with a wavelength resolution by minimizing a distance between the recorded and the simulated data.

s5 600x300

Slow slip events (SSE) are transient processes releasing stress at faults without significant earthquake. Their discovery about two decades ago in subduction zones demonstrates a complex dynamics of the megathrust controlled by spatially variable friction at the plate interface. While deep SSEs occurring downdip of highly locked areas have been extensively studied, other subduction zones highlight another transient process where slip occurs at the same depths as large earthquakes and is synchronous to intense micro-seismicity. We refer to this type of transient as S5 for Synchronous Slow Slip & Seismic Swarm, which is the focus of our proposal.