

FIRST Fibered Imager foR Single Telescope

Elsa Huby LESIA, Observatoire de Paris

and **G. Perrin**, F. Marchis, **S. Lacour**, T. Kotani, G. Duchêne, E. Choquet, E. Gates, J. Woillez, O. Lai, P Fédou

PARIS

DIDEROT

CINIS

INSU

VEGAS Workshop - 15.02.2013

I. Aperture masking

université

PARIS

CNTS

INSU

Optical Transfer Function = pupil autocorrelation

I. Aperture masking

université

PARIS

(Chrs)

INSU

Optical Transfer Function = pupil autocorrelation

I. Aperture masking

Non redundant pupil

Aperture mask on the Keck telescope : Tuthill et al. 2000

Non-redundant pupil mask

Point Spread Function

Optical Transfer Function

Tuthill et al., 2000

PARIS

DIDERO

CMrS

INSU

PARIS

CINIS

INSU

l'Observatoire LESIA

Recent results

Sparse Aperture Masking at VLT (Lacour et al., 2011)

5σ high-contrast detection limits at λ/D of 2.5 × 10⁻³ (ΔL = 6.5) for HD 92945 and 4.6 × 10⁻³ (ΔL = 5.8) for HD 141569

Drawbacks :

- limited collecting area

- spatial corrugations may remain

II. FIRST concept

CITS

PARIS

Pupil remapping

II. FIRST concept

Spatial filtering

+ Self calibration algorithm

No Speckle noise

PARIS

université

III. FIRST - 18

III. FIRST - 18

Self calibration algorithm

2 x 9 fibres

Redundant telescope entrance pupil

Non-redundant recombination

CINIS

INSU

PARIS

DIDEROT

36 complex equations $\mu_{ii} = V_{ii} e^{i \Phi_{ii}} \times G_i G_i e^{i(P_j - P_i)}$

versus

Non redundant case : 36 complex visibilities + 9 complex gains = 45 unknowns

LESIA

l'Observatoire

Self calibration algorithm

2 x 9 fibres

Redundant telescope entrance pupil

Non-redundant recombination

36 complex equations $\mu_{ii} = V_{ii} e^{i \Phi_{ii}} \times G_i G_i e^{i(P_j - P_i)}$

versus

Non redundant case : 36 complex visibilities + 9 complex gains = 45 unknowns

Solution Lacour et al., 2007 0 0 0 1 0 0 0 0 0 0 0 0 $\arg(\mu_1)$ ϕ_0 0 0 0 1 0 0 0 0 0 0 0 0 $\arg(\mu_2)$ ϕ_1 0-1 0 0 0 0 1 0 0 0 0 0 0 0 $\arg(\mu_3)$ ϕ_2 $\arg(\mu_4)$ ϕ_3 $\arg(\mu_5)$ ϕ_4 $1 - 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$ $\arg(\mu_6)$ ϕ_5 $0 - 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$ $\arg(V_1)$ $\arg(\mu_7)$ $\arg(\mu_8)$ 0 0 0 0 0 0 1 0 0 0 0 $\arg(V_2)$ $1 \quad 0 - 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$ $\arg(\mu_9)$ $\arg(V_3)$ $\arg(\mu_{10})$ $0 - 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0$ $\arg(V_4)$ 0 - 1 0 0 0 0 0 1 0 0 0 0 $\arg(V_5)$ $\arg(\mu_{11})$ $0 \quad 0 - 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0$ $\arg(V_6)$ $\arg(\mu_{12})$ $\arg(\mu_{13})$ 0 1 $0 \quad 0 - 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$ $\arg(V_7)$ $\arg(\mu_{14})$ $0 \ 1$ $0 \quad 0 \quad 0 - 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0$ $\arg(V_8)$ $0 \ 0 \ 0 \ 0 - 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$ $\arg(V_9)$ $\arg(\mu_{15})$ Invertible matrix PARIS 10/35 CNIS

INSU

DIDERO

III. FIRST - 18

1.20m

III. FIRST - 18

Injection Optimization

VEGAS Workshop - 15.02.2013

FIRST light !

Lick Observatory, Mount Hamilton On the **3-m Shane** telescope Behind **Adaptive Optics system**

Vega with FIRST-9 - July 2010

Results - First light 2010

VEGAS Workshop - 15.02.2013

15/35

INSU

DIDEROT

Optical setup

VEGAS Workshop - 15.02.2013

Data reduction

Vega with FIRST-18 (10.2011)

VEGAS Workshop - 15.02.2013

17/35

université

DIDEROT

PARIS

18/35

INSU

An interesting quantity

The closure phase does not depend on atmospheric turbulence

CMIS

PARIS

DIDEROT

Dbservatoire

LESIA

Binary simulation

Separation : λ/\mathbf{D} at 750nm $X\sim52$ mas, Y=0

Flux ratio : $\rho = 0.9 \rightarrow \Delta r_{mag} \sim 0.3 \text{ mag}$

VEGAS Workshop - 15.02.2013

LESIA

0.01

0.8

DIDEROT

0.02

0.9

Binary simulation

VEGAS Workshop - 15.02.2013

DIDEROT

VEGAS Workshop - 15.02.2013

université

DIDEROT

PARIS

CINIS

INSU

Target	Rmag	Type	Int. time	Total int. time
Aldebaran	0.1	Calibrator	50ms	4min10s
Capella	0.4	Binary (sep~56mas flux ratio~1)	50ms	4min10s

VEGAS Workshop - 15.02.2013

université

DIDEROT

PARIS

CITS

Target	Rmag	Type	Int. time	Total int. time
Aldebaran	0.1	Calibrator	50ms	4min10s
Capella	0.4	Binary (sep~56mas flux ratio~1)	50ms	4min10s

VEGAS Workshop - 15.02.2013

DIDEROT

VEGAS Workshop - 15.02.2013

Capella closure phases

Capella closure phases

Conservatoire LESIA

Results - Capella

Fitted Parameters :

- Spectral flux ratio ρ for every spectral channel
- Angular separation r
- Position angle θ

Results :

- Separation ~ 57 mas +- 0.5 mas
- Position angle ~ 110° +- 1°

Need of an astrometric calibrator \rightarrow Algol

universite

PARIS

CINIS

INSU

Results - Capella

Fitted Parameters :

- Spectral flux ratio ρ for every spectral channel
- Angular separation r
- Position angle θ

Results :

- Separation ~ 57 mas +- 0.5 mas
- Position angle ~ 30° +- 1°

Need of an astrometric calibrator \rightarrow Algol Rotation : -81° +-0.5°

INSU

Results - Capella

VEGAS Workshop - 15.02.2013

33/35

CITS

Promising results

- New chapter in a long story
 - I. An original idea \rightarrow Perrin et al., 2006
 - II. Performance simulations
 - III. Prototype and lab results \rightarrow Kotani et al. 2009
 - IV. First on-sky results \rightarrow Huby et al., 2012
- \rightarrow Lacour et al. 2007

V. Binary detection at the diffraction limit

- Next steps
- Implement the self-calibration algorithm
- Image reconstruction
- To increase the stability : accuracy +
- To develop FIRST-30 : number of baselines +
- FIRST on an 8-10m telescope \rightarrow SUBARU (July 2013)

VI. Summary

DIDERO'

Thank you

VEGAS Workshop - 15.02.2013

35/35

COTS INSU Observer & con PARIS DIDEROT