Imaging exoplanets: The current instruments and their limitations

Faustine Cantalloube

cantalloube@mpia.de

Max Planck Institute for Astronomy, Heidelberg

Heidelberg

Baden-Würtemberg Germany

What do we get from an image ?

- Projected separation from the host star,
- **Contrast** to the host star,
- **Detection limit** for the data set

What do we infer from an image ?

- Planet parameters: Mass, radius, temperature, metallicity, surface gravity
- Planet atmosphere: clouds, dust, hazes, chemical compounds
- **Dynamics of the system:** orbital parameters, migration, scaterring
- Statistical survey: type of companions, link to host star, environment...

-> discriminate between different planetary **formation** and **evolution** models

Raw image from VLT/SPHERE/IFS

Loads of work...

Artistic view of an exoplanetary system

Why do we do exoplanet imaging ?

- **Complementary** to other techniques: young stars, massive and distant planets
- Direct extraction of **spectrum:** atmospheric composition and structures
- Planetary system architecture: planet-planet or planet-disk interactions, follow-up...

The challenges of exoplanet imaging *Example of Jupiter*

5 AU 0.1 Observer

Distance : 5 AU (period 11 years)
→ Observation at 50pc: separation 100 mas!

Age : 1 billion years old
→ 1 000 000 less bright than the Sun!

Note, from Earth: Moon angular diameter ~ 30 arcmin Jupiter angular diameter ~ 30 arcsec

The target stars

High angular resolution and high contrast:

- \rightarrow Stars close to the Sun
- \rightarrow Young stars
- → Thermal emission (Infrared)

High contrast imaging

Observing this target with the VLT

The three pillars of high-contrast imaging

Today reaching contrast of **10**⁻⁶ contrast at **500 mas**, in near-infrared

Images from VLT/SPHERE-IRDIS: HR8799 in H-band (1.6μm)

The three pillars of high-contrast imaging

Today reaching contrast of **10**⁻⁶ contrast at **500 mas**, in near-infrared

Images from VLT/SPHERE-IRDIS: HR8799 in H-band (1.6μm)

1- Adaptive Optics

1- Adaptive Optics

Adaptive Optics Result

1- Adaptive Optics

Adaptive Optics

Limitations

But limited:

. . .

- Limited spatial sampling of the WFS
- Limited number of photons reaching WFS detector
- Limited number of actuators of the DM

The whole system must run as fast as possible

The three pillars of high-contrast imaging

Today reaching contrast of **10**⁻⁶ contrast at **500 mas**, in near-infrared

Images from VLT/SPHERE-IRDIS: HR8799 in H-band (1.6μm)

Coronagraphy

Get rid of the starlight, while preserving its close environment

No coronagraph

Coronagraphy

Get rid of the starlight, while preserving its close environment

Coronagraphy

Get rid of the starlight, while preserving its close environment

Coronagraphy

Get rid of the starlight, while preserving its close environment

Coronagraphy

Limitations

But limited:

- Sensitivity to jitter
- Spectral bandwidth
- Throughput close to the star

The coronagraph must have small inner working angle

The three pillars of high-contrast imaging

Today reaching contrast of **10**⁻⁶ contrast at **500 mas**, in near-infrared

Images from VLT/SPHERE-IRDIS: HR8799 in H-band (1.6μm)

Post-processing

Principle

Find a **different** behavior between the speckles and the astrophysical signals. → Exploit this <u>diversity</u> to recover the signal

Today, all are based on **differential imaging**:

Post-processing

Angular differential imaging (ADI)

The speckle field is ∼ stable in time the planetary signal rotates at a deterministic speed → Exploit of the pupil traking mode

Temporal median (cADI) Linear combination (LOCI) PCA (KLIP / PynPoint)

1. Estimate the star image

3- Post-processing

Post-processing Three families

1: "speckle subtraction"

Differential imaging techniques alone

Visual detection + post-characterization

...Improvements...: Pairet et al. 2018 Bottom et al. 2017 Bonse et al. 2019

. . .

2: "Match-filtering"

Use the expected pattern of the planet as a model + inverse problem approach

> Automatic detection + characterization

ANDROMEDA Cantalloube et al., 2015

FMMF Ruffio et al., 2017 PACO Flasseur et al., 2018

3: "Machine learning"

Use the massive sample of images + neural network

Only detection Not mature yet

SODINN Gomez-Gonzales et al., 2017

3- Post-processing

Post-processing

Limitations

But limited:

- Speckle field estimate is not perfect
- Not suited for extended features
- Not really robust to temporal errors*

We are missing knowledge about the instrument...

The SPHERE instrument

Commissioned in May 2014

- One common path instrument: AO + coronagraph
- Three subsystem instruments

4- Model of the instrument

Then real life...

Responsible for "quasi-statics speckles"

NCPAs: Origin and solutions

Origin:

Any **optical aberration** not corrected by the AO <u>or</u> not in the science arm

- Internal turbulence
- Temperature changes,
- Pressure changes,
- Gravitational bent,
- •

Quasi-statics speckles are the problem:

-Too slow: Cannot be averaged in a halo -Too fast: Cannot be calibrated

-1.0-0.5 0.0 0.5 1.0 Distance in arcsec

NCPAs: Origin and solutions

Origin:

Any **optical aberration** not corrected by the AO <u>or</u> not in the science arm

- Internal turbulence
- Temperature changes,
- Pressure changes,
- Gravitational bent,
- ...

Mitigation:

- Off-line software solutions: post-processing techniques
- Hardware solutions: ZELDA, Focal plane sensing (VVC, vAPP)
- On-line software solution: COFFEE, EFC, PSI...
- Heavy hardware solutions: SCC

Responsible for **starlight leakage**

LOR: Origin and solutions

Origin:

- Atmospheric post-AO residuals: ~ 0.06 mas
- Vibrations: ~ 100 mas
- Atmospheric dispersion residuals: ~ 0.16 mas
- Differential thermal/mechanical effect: ~ 0.20 mas

Mitigation:

- Coronagraphic device: pupil plane coronagraph
- On-line solution: using the waffle mode
- Control solution: differential tip-tilt sensor (DTTS) goal < 0.2mas Baudoz et al., 2018

Responsible for "Mickey Mouse effect"

LWE: Origin and solutions

Origin:

The spider legs are **colder** than the ambiant air;

Around each fragment it creates layer of air of **different** refraction index; It provokes **a differential piston-tip-tilt** in each fragment.

Mitigation:

- Software solutions: but instrument-dependent
- Active solutions (spiders heating, ventilation): too invasive
- Passive solution: low emissivity coating

LWE: Origin and solutions and results

Origin:

The spider legs are **colder** than the ambiant air; Around each fragment it creates layer of air of **different** refraction index; It provokes **a differential piston-tip-tilt** in each fragment.

Mitigation:

- Software solutions
- Active solution
- Passive solution !

On VLT/UT4 (SPHERE): Occurrence from 18% to 3% !

Milli et al., 2018

4- Model of the instrument

The contrast killers #4

Responsible for the "Wind driven halo"

The contrast killer #4 WDH: Origin and solutions

Origin:

AO-servolag (temporal bandwidth errror) **vs** turbulence speed The **jetstream** layer (12km, 20 to 50m/s!) is responsible for it

jetstream wind forecast

The contrast killer #4 WDH: Origin and solutions

Origin:

AO-servolag (temporal bandwidth errror) **vs** turbulence speed The **jetstream** layer (12km, 20 to 50m/s!) is responsible for it

unit)

Flux (arbitrary

Movie from SHARDDS (SPHERE-IRDIS – Broadband H): Red arrow: ground layer Black arrow: jet stream layer

The contrast killer #4 WDH: Origin and solutions

Origin:

AO-servolag (temporal bandwidth errror) **vs** turbulence speed The **jetstream** layer (12km, 20 to 50m/s!) is responsible for it

- Faster AO
- Predictive control for the AO
- Post-processing: on-going work !

What's next Upgrade of SPHERE ? Faster, closer, deeper, fainter

Proposed new hardware:

AO:

- New DM with less dead actuators
- Faster DM + loop + detector
- More sensitive WFS
- Predictive control

Coronagraph:

- Transparent focal plane mask
- Pupil plane
- Active NCPAs control

Subsystems:

- High spectral resolution
- Coupling with other instruments (CRIRES+, ESPRESSO)
- Lucky imaging techniques

On-going action for ESO proposition

5- The future of HCI

What's next ELT instrumentation

As of December 2018

5- The future of HCI

What's next ELT instrumentation

Three instruments foreseen for first light in 2030:

 \rightarrow They all have a high contrast mode !

HARMONI

What about ELT instruments

4- Extrapolation to ELT

What about ELT instruments ...

The infamous "**Island effect**" due to pupil fragmentation: This is a different origin from low wind effect or atmospheric piston ! But same effect on the PSF...

Illustration N. Schwarz (UK-ATC)

METIS end-to-end simulations

4- Extrapolation to ELT

What about ELT instruments ...

... Still a lot of work ...

High-contrast imaging is a very specific regim Understanding instruments such as SPHERE is key for ELT design

Conclusions:

Imaging exoplanets ...

- bring precious info
- require specific instrumentation
- require specific post-processing techniques

Thank you !

- makes us discover things we ignored
- is definitely fun !

