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What do we get from an image ?

* Projected separation from the host star,
* Contrast to the host star,
* Detection limit for the data set



What do we infer from an image ?

* Planet parameters: Mass, radius, temperature, metallicity, surface gravity
* Planet atmosphere: clouds, dust, hazes, chemical compounds

* Dynamics of the system: orbital parameters, migration, scaterring

e Statistical survey: type of companions, link to host star, environment...

-> discriminate between different planetary formation and evolution models

Loads of work...

Raw image from Artistic view
VLT/SPHERE/IFS of an exoplanetary system



Why do we do exoplanet imaging ?
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 Complementary to other techniques: young stars, massive and distant planets
* Direct extraction of spectrum: atmospheric composition and structures
* Planetary system architecture: planet-planet or planet-disk interactions, follow-up...




The challenges of exoplanet imaging
Example of Jupiter

Distance : 5 AU (period 11 years)
— Observation at 50pc: separation 100 mas!

Age : 1 billion years old
— 1 000 000 000 less bright than the Sun!

Note, from Earth:
Moon angular diameter ~ 30 arcmin
Jupiter angular diameter ~ 30 arcsec
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The target stars

High angular resolution and high contrast:

—> Stars close to the Sun
= Young stars

= Thermal emission (Infrared)

Sun
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Observing this target with the VLT

Seeing-limited
H-band




The three pillars of high-contrast imaging

Today reaching contrast of 10-® contrast at 500 mas, in near-infrared

Seeing-limited Adaptive Optics
H-band

median seein
o & Coronagraphy

Post-processing

C~10%- 10°

Images from VLT/SPHERE-IRDIS:
HR8799 in H-band (1.6um)
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Adaptive Optics
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Adaptive Optics

Result

Atmospheric Realistic AO
turbulent phase residual phase

Seeing-limited median seeing
H-band 0.8”




Adaptive Optics

Limitations

But limited:
* Limited spatial sampling of the WFS
* Limited number of photons reaching WFS detector
* Limited number of actuators of the DM

The whole system must run as fast as possible
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Coronagraphy
Get rid of the starlight,
while preserving its close environment
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Coronagraphy
Get rid of the starlight,
while preserving its close environment
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Coronagraphy
Get rid of the starlight,
while preserving its close environment
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Coronagraphy
Get rid of the starlight,
while preserving its close environment
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Coronagraphy

Limitations

But limited:
* Sensitivity to jitter
e Spectral bandwidth
* Throughput close to the star

The coronagraph must have small inner working angle




The three pillars of high-contrast imaging

Today reaching contrast of 10-® contrast at 500 mas, in near-infrared
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Post-processing
Principle

Find a different behavior between
the speckles and the astrophysical signals.
—> Exploit this diversity to recover the signal
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1. Estimate the star image 2. Subtract it to the image 3. Combine all the images




Post-processing
Angular differential imaging (ADI)

The speckle field is ~ stable in time
the planetary signal rotates at a deterministic speed

—> Exploit of the pupil traking mode

Temporal median (cADI)
Linear combination (LOCI)

PCA (KLIP / PynPoint)

1. Estimate the star image 2. Subtract it to the image 3. Combine all the images




Post-processing

Three families

1: “speckle subtraction”

Differential imaging
techniques alone

Visual detection
+ post-characterization

...Improvements...:
Pairet et al. 2018
Bottom et al. 2017
Bonse et al. 2019

2: “Match-filtering”

Use the expected pattern of
the planet as a model
+ inverse problem approach

Automatic detection
+ characterization

ANDROMEDA
Cantalloube et al., 2015

FMMF
Ruffio et al., 2017

PACO
Flasseur et al., 2018

3: “Machine learning”

Use the massive
sample of images
+ neural network

Only detection
Not mature yet

SODINN
Gomez-Gonzales et al., 2017



Post-processing
Limitations

But limited:
» Speckle field estimate is not perfect
* Not suited for extended features

* Not really robust to temporal errors*

We are missing knowledge about the instrument...




The SPHERE instrument
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Then real life...




The contrast killer #1
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dead or alive

”Non common paﬁh
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Responsible for “quasi-statics speckles”




The contrast killer #1
NCPAs: Origin and solutions

Origin:
Any optical aberration not corrected by the AO or not in the science arm
* Internal turbulence
* Temperature changes,
* Pressure changes,
* Q@ravitational bent,

Quasi-statics speckles are the problem:
-Too slow: Cannot be averaged in a halo
-Too fast: Cannot be calibrated

Distance in arcsec

-1.0-0.50.0 0.5 1.0
Distance in arcsec



The contrast killer #1
NCPAs: Origin and solutions

Origin:

Any optical aberration not corrected by the AO or not in the science arm
* Internal turbulence

Temperature changes,

Pressure changes,

Gravitational bent,

Mitigation:

« Off-line software solutions: post-processing techniques
* Hardware solutions: ZELDA, Focal plane sensing (VVC, vVAPP)
* On-line software solution: COFFEE, EFC, PSI...

* Heavy hardware solutions: SCC



The contrast killers #2

Responsible for starlight leakage

* kkk Kk ARk *x x k x x &

In jail




The contrast killer #2
LOR: Origin and solutions

Origin:
* Atmospheric post-AO residuals: ~ 0.06 mas
* Vibrations: ~ 100 mas
e Atmospheric dispersion residuals: ~ 0.16 mas

» Differential thermal/mechanical effect: ~ 0.20 mas

Mitigation:

« Coronagraphic device: pupil plane coronagraph
* On-line solution: using the waffle mode
 Control solution: differential tip-tilt sensor (DTTS) - goal < 0.2mas

Baudoz et al., 2018




The contrast killers #3

Responsible for “Mickey Mouse effect”

“Low wind effec®” "

-




The contrast killer #3
LWE: Origin and solutions

Origin:
The spider legs are colder than the ambiant air;
Around each fragment it creates layer of air of different refraction index;

It provokes a differential piston-tip-tilt in each fragment.

Mitigation:

« Software solutions: but instrument-dependent
* Active solutions (spiders heating, ventilation): too invasive
* Passive solution: low emissivity coating




The contrast killer #3
LWE: Origin and solutions and results

Origin:
The spider legs are colder than the ambiant air;
Around each fragment it creates layer of air of different refraction index;

It provokes a differential piston-tip-tilt in each fragment.

Mitigation:

« Software solutions
e Active solution
* Passive solution !
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On VLT/UT4 (SPHERE):
Occurrence from 18% to 3% !
Milli et al., 2018




The contrast killers #4

Responsible for the “Wind driven halo”
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just dead




The contrast killer #4
WDH: Origin and solutions

Origin:

AO-servolag (temporal bandwidth errror) vs turbulence speed : 3
The jetstream layer (12km, 20 to 50m/s!) is responsible for it <
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The contrast killer #4
WDH: Origin and solutions

Origin:
AO-servolag (temporal bandwidth errror) vs turbulence speed : 3
The jetstream layer (12km, 20 to 50m/s!) is responsible for it -
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The contrast killer #4
WDH: Origin and solutions

Origin:
AO-servolag (temporal bandwidth errror) vs turbulence speed 4
The jetstream layer (12km, 20 to 50m/s!) is responsible for it <z

Mitigation:

* Faster AO
* Predictive control for the AO
* Post-processing: on-going work !




What’s next
Upgrade of SPHERE ?

Faster, closer, deeper, fainter

Proposed new hardware:

AO:

* New DM with less dead actuators
Faster DM + loop + detector

* More sensitive WFS

Predictive control

Coronagraph:

* Transparent focal plane mask
e Pupil plane

e Active NCPAs control

Subsystems:
* High spectral resolution

e Coupling with other instruments (CRIRES+, ESPRESSO)

* Lucky imaging techniques

On-going action for ESO proposition




What’s next
ELT instrumentation

As of December 2018




What’s next
ELT instrumentation

Three instruments foreseen for first light in 2030:
— They all have a high contrast mode !

NAETIS

Mid-infrared
E-ELT Imager and

Spectrograph




What about ELT instruments ...

METIS end-to-end simulations

Coronagraphic image...

Diffraction only

Diffraction + AO residuals



4- Extrapolation to ELT

What about ELT instruments ...

The infamous “Island effect” due to pupil fragmentation:
This is a different origin from low wind effect or atmospheric piston !

But same effect on the PSF...
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METIS end-to-end simulations



4- Extrapolation to ELT

What about ELT instruments ...

... Still a lot of work ...

High-contrast imaging is a very specific regim
Understanding instruments such as SPHERE is key for ELT design




Conclusions:

Imaging exoplanets ...

Vi

bring precious info

require specific instrumentation
require specific post-processing techniques
makes us discover things we ignored

is definitely fun !

Thank you !



