Improved line formation models // accurate stellar abundances

Anish Amarsi (MPIA)

Lagrange 5 Feb 2019

Intro

Why abundances?

- Long-lived information in abundances A(X), ratios [X/Y]
- Learn about
 - Stellar structure, evolution & nucleosynthesis
 - Supernova mechanisms & nucleosynthesis
 - **Exoplanet** formation & characterisation
 - Galaxy formation & evolution

Reliable abundances?

- Information in absorption & emission lines
- Infer stellar parameters; abundances

Reliable abundances?

- Prone to systematic modelling errors
- 1D vs 3D; LTE vs non-LTE

1D vs 3D

SST observations van der Voort 2006

3D hydro. simulation Collet+ 2018

1D vs 3D

SST observations van der Voort 2006

3D hydro. simulation Collet+ 2018

1D vs 3D

SST observations van der Voort 2006

1D simulation	
//	

3D granulation effects

- Effects are apparent in high-resolution observations
- Even of stars ≠ Sun

- Need some model for energy partitioning
- Local thermodynamic equilibrium (LTE): neglect radiation

- Need some model for energy partitioning
- Local thermodynamic equilibrium (LTE): neglect radiation

LTE vs non-LTE

Codes

STAGGER

- 3D (magneto-)hydrodynamics
- 3D LTE radiative transfer with opacity binning

BALDER

Non-LTE contribution

- Updated background opacities
- Efficient MPI parallelisation

- 3D multi-level non-LTE radiative transfer
- MALI preconditioning (R&H 1992)

Results: solar abundances

Why care about the Sun?

- Only understand other stars as well as one understands the Sun
- Solar abundances
 - Key ingredient in solar/stellar/galactic models
 - Yardstick for understanding the cosmos
- Benchmark for spectroscopic models

Why care about the Sun?

- Only understand other stars as well as one understands the Sun
- Solar abundances
 - Key ingredient in solar/stellar/galactic models
 - Yardstick for understanding the cosmos
- Benchmark for spectroscopic mod

New physics via solar analyses Improved abundances of all stars

Solar modelling problem

- Take a standard solar interior model based on spectroscopic abundances
- Compare against helioseismic measurements
- Disagree on structure of the solar interior (sound speed)

Interior sound speed

Interior sound speed

Solar modelling problem

- Problem is largest at base of convection zone
- Missing solar interior physics (extra mixing)?
- Missing interior opacities (Opacity Project / OPAL)?
- Too low **oxygen** (neon, iron, carbon, ...) **abundances**?
 - O, Ne, C are depleted in meteorites
 - Scrutinise non-LTE models of carbon and oxygen

Non-LTE model atoms

- Improved atomic data and realistic model atoms
- New: first principles inelastic X+H collisions

Non-LTE model atoms

- Improved atomic data and realistic model atoms
- New: first principles inelastic X+H collisions

Non-LTE model atoms

- Improved atomic data and realistic model atoms
- New: first principles inelastic X+H collisions

Magnetic fields?

- Sun displays evidence of magnetic fields
- "Quiet Sun" also has magnetic fields: 50-200G
- Need **3D MHD** simulations...

Movie credit: SDO, NASA

Magnetic fields?

Lowers oxygen abundance (slightly)

Solar abundances summary

- New 3D non-LTE results ~ consistent with old ones
 - Oxygen 777nm (Amarsi, Barklem+ 2018) 8.69 (8.69)
 - Also carbon lines (Amarsi, Barklem+ sub.) 8.44 (8.43)
- Full CNO analysis in prep.
- Validated models (collisions); apply to other stars...

Results: carbon/oxygen/iron GCE

Why COFe?

- Three of the most abundant metals
- C/O important in exoplanet studies (in prep.)
- C, O, Fe are key GCE tracers (e.g. Tinsley 1979)
 - C & O from hydrostatic burning in massive stars
 - C also from **low/intermediate mass stars**
 - Fe from core-collapse and TypeIa supernovae

- Upturn in [C/O] at low [O/H]
- Signature of first stars? Or rotation?

[C/O] upturn?

- Upturn in [C/O] at low [O/H]
- Signature of first stars? Or rotation?

[C/O] upturn?

- Upturn in [C/O] at low [O/H]
- Signature of first stars? Or rotation?

[C/O] upturn revisited

- First time: a "full" 3D non-LTE analysis
 - Both stellar parameters and abundances based on 3D non-LTE
 - 40 metal-poor turn-off halo stars (Nissen+ 2007)
- Easy to replicate method to large samples

A "full" 3D non-LTE analysis

- Effective temperatures from 3D non-LTE Hβ lines
- Grid available: Amarsi, Nordlander+ 2018

A "full" 3D non-LTE analysis

- Surface gravities from Gaia DR2
- [Fe/H] from 3D LTE Fe2 lines (non-LTE effects are small)

A "full" 3D non-LTE analysis

- Carbon and oxygen from 3D non-LTE atomic lines
- High-excitation, near-IR: similar sensitivities

[C/O] in halo stars

[C/O] in halo stars

Extra results: potassium GCE

Potassium GCE

- Potassium production is not completely understood
- Massive stars
 - Hydrostatic oxygen shell burning
 - **Explosive** oxygen burning
- Extra nucleosynthesis channels? (Kobayashi+ 2011; Prantzos+ 2018)

Potassium GCE

Potassium GCE

Extra results: atomic diffusion

Atomic diffusion

- Surface abundances depleted in turn-off stars
- Investigate in mono-populations: open clusters

Atomic diffusion

- Non-LTE: negative gradient

 atomic diffusion(?)

Conclusion

Conclusion

- First principles inelastic X+H collisions, validated on solar CLV
- Solar C & O abundances largely unchanged
- 3D non-LTE effects can strongly alter abundance trends and thus our understanding of the Sun, stars, and our Galaxy