

The formation and early evolution of planet-forming disks

Patrick Hennebelle

Benoit Commerçon, Anaelle Maury, Yueh-Ning Lee Gilles Chabrier, Pierre Marchand, Sébastien Fromang, Geoffroy Lesur

I – What sets the "typical" size of early protoplanetary disks ?

II- Are late disks really "isolated" ?

I- The Physics of the collapse -hydro vs MHD: the magnetic "catastrophy" -a "catastrophy" really ? What observations say -a "catastrophy" really ? What theory says -misalignement -turbulence -MHD is NOT ideal -the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation

-the model

-comparisons between theory and simulations

I- The Physics of the collapse

-hydro vs MHD: the magnetic "catastrophy"

-a "catastrophy" really ? What observations say
 -a "catastrophy" really ? What theory says
 -misalignement

-turbulence

-MHD is NOT ideal

- -the uncontrolled nature of non-ideality
- -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation-the model

-comparisons between theory and simulations

Zoom into the central part of a collapse calculation

XY

~30 light hours

Density, rotation and infall velocity profiles

I- The Physics of the collapse

-hydro vs MHD: the magnetic "catastrophy"

-a "catastrophy" really ? What observations say

-a "catastrophy" really ? What theory says

-misalignement

-turbulence

-MHD is NOT ideal

-the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation -the model

-comparisons between theory and simulations

Magnetic field has solved the hydrodynamical catastrophy !

Comparison of the PdBI maps with simulations

Hydrodynamical simulations produce too much extended (+ multiple) structures if compared to Maury et al. 2010 Observations. Tobin+2015 observe few big disks (but most are small).

MHD simulations : produce PdB-A synthetic images with **typical FWHM ~ 0.2" - 0.6"**

Similar to Class 0 PdB-A sources observed !

need B to produce compact, single PdB-A sources.

I- The Physics of the collapse

-hydro vs MHD: the magnetic "catastrophy"-a "catastrophy" really ? What observations say

-a "catastrophy" really ? What theory says -misalignement

-turbulence

-MHD is NOT ideal

-the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation -the model

-comparisons between theory and simulations

Joos+2012

Why (and is) Magnetic braking so efficient?

(H+Ciardi 2009, Joos+2012, Li+2013, Gray+2017)

$$\frac{\rho V_{\theta}}{\tau_{br}} \propto B_z \frac{B_{\theta}}{4\pi h} \\ \frac{B_{\theta}}{\tau_{br}} \propto B_z \frac{V_{\theta}}{h} \end{cases} \Rightarrow \tau_{br} \propto \frac{\sqrt{4\pi h^2 \rho}}{B_z}$$

Aligned case

$$\rho C_s^2 = \left(\partial_z \phi\right)^2 + \frac{B_r^2}{8\pi}$$

Radial magnetic *field vanishes in the equatorial plan* and compresses the cloud

=> Creates a thin pseudo-disk

=> Magnetic braking very efficient

Misaligned case

 $\rho C_s^2 + \frac{B_y^2}{8\pi} = (\partial_z \phi)^2 + \frac{B_r^2}{8\pi}$ Rotation generates a new magnetic component which *does not vanish in the equatorial plan* \Rightarrow Thicker pseudo-disk \Rightarrow Magnetic braking less efficient

log of magnetic intensity ∞

I- The Physics of the collapse

-hydro vs MHD: the magnetic "catastrophy"-a "catastrophy" really ? What observations say

-a "catastrophy" really ? What theory says

-misalignement

-turbulence

-MHD is NOT ideal

-the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation -the model

-comparisons between theory and simulations

So-called « magnetic braking catastrophy » is a consequence of over-simplifying the collapse by setting B and J parallel =>small angle between J and B leads to disk formation

=> weak turbulence also leads to disk formation (Seifried+2011, Santos-Lima+2012, Joos+2013)

Santos-Lima+2012

10³ 10⁴ 10^{2} (1.4x10⁻¹⁹ g cm⁻³)

Mass-to-flux ratio as a function of times for 3 radius and 4 levels of turbulence

Joos et al. 2013

I- The Physics of the collapse

-hydro vs MHD: the magnetic "catastrophy"
-a "catastrophy" really ? What observations say
-a "catastrophy" really ? What theory says
-misalignement
-turbulence

-MHD is NOT ideal

-the uncontrolled nature of non-ideality

-ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation -the model

-comparisons between theory and simulations

MHD is (likely) highly non-ideal as the collapse proceeds

(Nishi & Nakano 1991, Nakano+2002, Kunz & Mouschovias2009, Krasnopolsky+2010, Dapp+2012, Tsukamoto+2015, Marchand+2016, Wurster+2016, Zhao+2016)

Need to consider a chemical network, a grain distribution and a cosmic rate ionisation rate (and remember: none of them has been tested...)

Resistivities for different assumptions

(Nishi & Nakano 1991, Nakano+2002, Kunz & Mouschovias2009, Krasnopolsky+2010, Dapp+2012, Marchand+2016, Wurster+2016, Zhao+2016)

Guillet+ in prep

2D simulation of disk formation for truncated MRN distribution

2D simulation of disk formation for MRN distribution 2

I- The Physics of the collapse

-hydro vs MHD: the magnetic "catastrophy"
-a "catastrophy" really ? What observations say
-a "catastrophy" really ? What theory says
-misalignement
-turbulence

-MHD is NOT ideal

-the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation -the model

-comparisons between theory and simulations

Non-ideal MHD: more regular and leads to the formation of small disks (Machida+2006,2010, Krasnopolsky+2011, Li+2014, Tomida+2015,2017, Masson+2016, H+2016)

I- The Physics of the collapse -hydro vs MHD: the magnetic "catastrophy" -a "catastrophy" really ? What observations say -a "catastrophy" really ? What theory says -misalignement -turbulence -MHD is NOT ideal -the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation-the model

-comparisons between theory and simulations

Can we predict, even qualitatively, the typical size of the disks?

H+2016 propose a model based on simple timescales estimated at the outer disk edge

=> Need B, density, rotation

Comparing time scales

-radial equilibrium

-vertical equilibrium

$$egin{aligned} v_{\phi} &\simeq \sqrt{rac{G\left(M_{*}+M_{
m d}
ight)}{r}}, \ h &\simeq rac{C_{
m s}}{\sqrt{4\pi G\left(
ho+
ho_{*}
ight)}}, \end{aligned}$$

Inner magnetic field weakly depends weakly on initial conditions

Masson+2016

H+2016

Density profile within the core close to the disk edge

Hydrodynamical collapse with rotation

Disk Radius dependence

Typical radius is: $r_{\rm d,AD} \simeq 18 \,\mathrm{AU} \times$ $\delta^{2/9} \left(\frac{\eta_{\rm AD}}{0.1 \,\mathrm{s}}\right)^{2/9} \quad \left(\frac{B_z}{0.1 \,\mathrm{G}}\right)^{-4/9} \left(\frac{M_{\rm d} + M_*}{0.1 \,\mathrm{M_\odot}}\right)^{1/3}$

By contrast hydro would lead to:

$$r_{\rm d,hydro} \simeq 106 \,{\rm AU} \, \frac{\beta}{0.02} \, \left(\frac{M}{0.1 \,{\rm M}_{\odot}}\right)^{1/3} \left(\frac{\rho_0}{10^{-18} {\rm g} \,{\rm cm}^{-3}}\right)^{-1/3}$$

=> Early disk formation is magnetically *self-regulated* !

Their characteristics weakly depend (in some reasonable range) on the initial conditions such as magnetization and rotation.

I- The Physics of the collapse -hydro vs MHD: the magnetic "catastrophy" -a "catastrophy" really ? What observations say -a "catastrophy" really ? What theory says -misalignement -turbulence -MHD is NOT ideal -the uncontrolled nature of non-ideality -ideal vs non-ideal

II- An analytical model to predict disk size: magnetic self-regulation -the model

-comparisons between theory and simulations

Comparison between analytical models and several simulations

$$\begin{split} r_{\rm d,AD} &\simeq 18\,{\rm AU}\,\times \\ \delta^{2/9} \left(\frac{\eta_{\rm AD}}{0.1\,{\rm s}}\right)^{2/9} \quad \left(\frac{B_z}{0.1\,{\rm G}}\right)^{-4/9} \left(\frac{M_{\rm d}+M_*}{0.1\,{\rm M}_\odot}\right)^{1/3} \end{split}$$

Comparison between analytical model and simulations for a wide range of parameters Turbulence and rotation are varied by a factor 5, mass by a factor 100, B by a factor 2

H+2016

Long term evolution

8 times more resolution

I – What sets the "typical" size of early protoplanetary disks ?

II- Are late disks really "isolated" ?

Are late disks completely isolated ?

Correlation between accretion rate and star mass

accretion laws dM/dt vs M_{*} seems to be *"naturally"* explained by Bondi-Hoyle accretion onto the disk (Padoan et al. 2005, Klessen & H 2010, Padoan et al. 2014)

Link between external and internal accretion ?

Expected accretion as a function of star mass for various mean density (100 cc standard) Comparison with observed rates

Klessen & H 2010

100 cc dM/dt [M_© yr⁻¹] 10 cc -1.0-0.50.0 0.5 1.0 $\log(M_{\bullet})$ [M_{\odot}] -6og(Ḿ _{sink}∕M_☉ yr^{−1} -8 -10 -12 > 0.25M6.0 6.5 4.0 4.5 5.0 5.5 -1.5 -1.00.5 1.0 log(Age/yr) $\log(M/M_{\odot})$

1000 cc

Result from very large MHD simulations (self-gravity and sink particles included)

Padoan+ 2014

Hashimoto et al. 2011

Benisty et al. 2015

Wagner et al. 2016

Approach and possible impact

To probe the influence accretion may have, we consider the simplest configuration ignoring explicitly magnetic field and self-gravity

Accretion is not symmetric => source of non-axisymmetric perturbations, which may transport angular momentum

Other processes: flux of angular momentum, instabilities at the accretion shock

MAJOR QUESTION:

Is the perturbation induced at the edge of the disk propagating deep inside the disk ?

Work approach

- 1- Exact self-similar solutions
- 2-2D numerical simulations
- 3-3D numerical simulations

Work approach

1- Exact self-similar solutions

2-2D numerical simulations

3- 3D numerical simulations

Self-similar variables

 $r = r_0 x$,

 $h = h_0 \tilde{h}$,

 $ho =
ho_0 \tilde{
ho},$

Stationary 2D equations

$$r = r_0 x,$$

$$h = h_0 \tilde{h},$$

$$u_r = r_0 \Omega_0 \tilde{u}_r,$$

$$u_{\phi} = r_0 \Omega_0 (x^{-1/2} + \tilde{u}_1),$$

$$\rho \left(u_r \partial_r u_{\phi} + \frac{u_{\phi}}{r} \partial_{\phi} u_{\phi} + \frac{u_r u_{\phi}}{r} \right) = -\frac{1}{r} \partial_{\phi} P,$$

$$\frac{1}{r} \partial_r (rh\rho u_r) + \frac{1}{r} \partial_{\phi} (h\rho u_{\phi}) = 0,$$

$$g_r = -\frac{GM}{r^2} = -\Omega^2 r,$$

$$h \simeq \frac{C_s}{\Omega}$$

$$Qr = n - \frac{GM}{r^2} = -\Omega^2 r,$$

$$h \simeq \frac{C_s}{\Omega}$$

$$(BU + 1 + V)U' + BT_0 \frac{R'}{R}$$

$$= (n + 1)T_0 + \frac{1}{2}U^2 + V^2 + 2V,$$

$$F = \rho_0 r_0^2 \Omega_0^2 \tilde{T} \tilde{\rho},$$

$$\frac{1}{r} = x^{-1/2} U(\psi),$$

$$\tilde{T} = x^{-n} R(\psi),$$

$$\tilde{T} = x^{-n} R(\psi),$$

$$\tilde{T} = x^{-1} T_0,$$

$$\beta' = Bx^{-1}.$$

$$\frac{1}{r} Cordinary self-similar equations}$$

$$(BU + 1 + V)U' + BT_0 \frac{R'}{R}$$

$$= (n + 1)T_0 + \frac{1}{2}U^2 + V^2 + 2V,$$

$$\frac{1}{r} + \text{shock condition to left and right part the RK conditions}$$

$$\frac{1}{r} + 2016$$

$$(-n + 3/2)RU + (R(BU + 1 + V))' = 0.$$

ock condition to match and right part through onditions hocks provide the pation in the system

h/r ~0.4

h/r ~0.2

 $tan\theta \sim V_{\phi}/C_{s} \sim r/h$

Self-similar solutions for various temperatures

Suggest: outer perturbations do propagate far into the disk and provide transport of momentum through spiral patterns with 2 opposite fluxes of mass.

The question as to whether it is robust to temperature and density profiles is still open.

Work approach

1- Exact self-similar solutions

2-2D numerical simulations

3- 3D numerical simulations

Setup:

Simulations done with PLUTO Cylindrical mesh, resolution of 512² Absorbing inner boundary No effective viscosity

Parameters:

Accretion rate (range around 10⁻⁷ M yr⁻¹) Symmetry of accretion Angular momentum

Axisymmetric accretion

Non-axisymmetric accretion

Stronger spiral patterns than in the axisymmetric case

Lesur+2015

$$\alpha(R_{\rm d}/10, \mathcal{L}_{\rm out} = 1) \simeq 1.3 \times 10^{-4} \left(\frac{\dot{M}_{\rm inf}}{10^{-7} \, M_{\odot} \cdot {\rm yr}^{-1}}\right)^{0.4}$$
$$\alpha(R_{\rm d}/10, \mathcal{L}_{\rm out} = 0) \simeq 3 \times 10^{-4} \left(\frac{\dot{M}_{\rm inf}}{10^{-7} \, M_{\odot} \cdot {\rm yr}^{-1}}\right)^{0.5}$$

Lesur+2015

Work approach

1- Exact self-similar solutions

2-2D numerical simulations

3- 3D numerical simulations

Setup:

Simulations done with RAMSES (used in nested grid mode) Cartesian mesh, resolution more tricky (up to h/r ~8 at rd/10) No "inner" boundary No explicit viscosity

Parameters:

Accretion rate (4 10⁻⁷ M yr⁻¹) Symmetry of accretion Angular momentum

Non-axisymmetric accretion (~4 10⁻⁷ M yr⁻¹, 10⁻² solar mass disk)

Are these spirals kinematic spirals?

alpha and mass evolution

Influence of the z-fluctuations is comparable to the radial ones

Axisymmetric accretion (~4 10⁻⁷ M yr⁻¹, 10⁻² solar mass disk)

Non-axisymmetric accretion (~4 10⁻⁷ M yr⁻¹, 10⁻² solar mass disk) No angular momentum in the accreted gas

Conclusions

Long road ahead to understand disk formation physics => need strong synergy between obs and theory and be ready for surprise

Alma observations are on the way. Statistical approach is the way to go.

Magnetic field seems to play a critical role in disk formation, possibly regulating their formation. Non-ideal MHD is important and not well controlled.

Are late protoplanetary disks accreting and at which rate ? (we know it is the case at early stage, class-0, and I)

Are the structures (such as spiral arms) seen by observers related to accretion ? How accretion will couple to other processes (gravity and magnetic field) ?

Ideal MHD: undergo the magnetic interchange instability (due to flux pilling in the center)

(Fromang+2006, Banerjee&Pudritz+2007, Joos+2012, Krasnopolsky+2014, Li+2014)

Turbulence induces both diffusion and misalignment.

Which one is dominant?

Gray+2017 run simulations with turbulence but manage to impose the angle between B and J (adjusting the mean J in concentric shells)

They concluded that: the dominant effect is the misalignment

0.575 M

-og 2 (g cm-

J//B

random

J and B

100

٩N

-100

-50

50

Conclusions

Magnetic field controls disk formation, hydro models not realistic enough

Magnetic braking "catastrophe": a product of theoretical oversimplification.

Non-ideal MHD is crucial for disc formation but uncertainties

Analytical models and simulations suggest weak dependence on rotation, turbulence and magnetic field => Magnetically self-regulated disk formation

Alma observations are on the way. Statistical approach is the way to go.