Characterizing imaged exoplanets with high-dispersion spectroscopy

Mamadou N'Diaye (OCA/Lagrange)

Lagrange seminar - Nov 27, 2018

Detection of extrasolar planets

Detection of extrasolar planets

Imaging exoplanets in thermal emission

HR8799

20AU ~2x Saturne-Sun distance

Jason Wang/Christian Marois

Beta pictoris b

Lagrange et al. 2018

Exoplanet imagers for warm or massive gaseous planets

- Extreme adaptive optics
- Coronagraphy
- Image post-processing
 - ▶ 10⁶-10⁷ raw contrast at 0.2" in H-band

Current performance: 10⁵-10⁶ contrast

Star image

Petit et al. 2016

Star image after extreme adaptive optics

Star image after saturation

Star image after coronagraphy

Star image after post processing

10⁻⁵-10⁻⁶ contrast down to 0.2"

Integral field spectrograph (IFS)

Low-resolution spectroscopy on imaged exoplanets

Spectrum for 51 Eri b

Limited resolution R=50-400 on current exoplanet imagers

Macintosh et al. 2015

Spectroscopic observations of exoplanets

Resolution from 4k to 100k and more

- Width of the spectral line
 - Spin of the planet
- Shift of the spectral lines
 - Orbital motion of the planet
- High resolution spectrum
 - Chemical composition of the planet atmosphere (CO, H2O, CH4, NH3, O3, etc)

Handful information on the planet nature

I. Snellen

High dispersion spectroscopy of exoplanets

High Resolution Spectroscopy for Exoplanet atmospheres Nice, 1-5 October 2018

Resolution from 4k to 100k and more

What could be probe?

- Molecular & atomic abundances
- Atmospheric temperature structure
- Winds, circulation & rotation
- Exospheres
- Surface sputtering and disintegrating planets
- Clouds, hazes and scattering processes
- Isotopes and isotopologues

Chairs A. Chiavassa, M. Brogi

High dispersion spectroscopy for warm or massive gaseous planets?

- Issue: low res spectrograph (R=50-400) on current exoplanet imagers
 - Imited information on planet atmospheric composition
- Solution: high res spectrograph (R=4k-100k) in combination with
 - adaptive optics (classical or extreme)
 - post processing methods
 - possibly coronagraphy

Adaptive optics (AO) + High resolution spectroscopy (HRS)

Sparks & Ford 2002, Riaud & Schneider 2007, Snellen et al. 2015, Lovis et al. 2017

Cross-correlation technique

Ji Wang

Spectral analysis on HR8799c

Konopacky et al. 2013

Spectral analysis on HR8799c

Cross-correlation analysis

Detection of CO and H2O

Spectral analysis on HR8799b

Cross-correlation analysis

Barman et al. 2015

Spectral analysis on beta pic b

VLT/SINFONI, R~5000, K-band, Strehl ~19-27%

Hoeijmakers et al. 2018

High dispersion coronagraphy for imaged exoplanets $S/N = \frac{1}{\sqrt{5}}$

Ji Wang

 $\sqrt{N_{\text{lines}}}$

S planet

Future prospects VLT/SPHERE & CRIRES+

Vigan et al. 2018

Future prospects Keck Planet Imager and Characterizer

Mawet et al. 2018

Future prospects FRIDA on Gran Telescopio Canarias

Near infrared imager and integral field spectrograph

- ~11m aperture diameter
- GTCAO, SR~60% in K-band
- Coronagraph masks

		U		
Grating	l/mm	order	Range (µm)	Resolution Power R
Low ZJ	30	2nd	0.9-1.35	1371
Low HK	30	1st	1.45-2.5	1032
Medium z	1st	200	0.9-1.15	3597
Medium J	1st	300	1.16-1.34	6701
Medium H	1st	150	1.45-1.82	4326
Medium K	1st	100	1.95-2.5	3916
High H	1st	720	1.617-1.653	26546
High K	1st	600	2.110-2.175	32172

Watson et al. 2016, N'Diaye et al. 2018

Conclusion

- High dispersion spectroscopy for imaged exoplanets
 - Promising for both detection & characterization
 - viable to study rocky planets with ground-based instruments

- More to come with forthcoming instruments
 - on the current 8-10m class telescopes (VLT, KECK, Subaru, Magellan, GTC)
 - on the ELTs (ELT/HARMONI, TMT/IRIS)

Extra slides