

Exploring the Epoch of Reionisation through its evolving topology

Emilie Thélie Collaborating with D.Aubert, J. Hiegel, N. Gillet & P. Ocvirk

Thélie et al. (2022) ■ Thélie et al. (accepted for publication in A&A, arxiv:2209.11608) ■ Hiegel, Thélie et al. (to be submitted to A&A)

THE EPOCH OF REIONISATION & ITS OBSERVATIONS

TOPOLOGY OF THE REIONISATION PROCESS

ÉMILIE THÉLIE – 21th March 2023

INTRODUCTION The Epoch of Reionisation (EoR)

Last big transition our Universe has known: the gas goes from totally neutral to totally ionised

Nice seminar

Neutral gas lonized gas

Indirect observations of the reionisation process

Indirect observations of the reionisation process

Lyman α & Gunn-Peterson trough Emission from distant quasars = distribution of hydrogen clouds along their line of sight

CMB power spectrum

= constraints on e.g. the optical depth τ

Deep surveys of distant galaxies (z ≤ 15) with HST and JWST = galaxy properties distribution during the EoR

IGM contains a diffuse component of **ionised gas** (mainly HI) that scatters the photons of the CMB Constraints on τ , which is a way to:

- estimate the density of the IGM.
- probe the ionisation state of the IGM.
- constrain the midreionisation redshift (Planck+18: z_{mid_re} = 7.68).

Indirect observations of the reionisation process

ÉMILIE THÉLIE – 21th March 2023

Indirect observations of the reionisation process: what do we learn?

Reionisation history:

time evolution of the reionisation process

Luminosity functions of galaxies: constraints on e.g. star formation rate (SFR) & galaxy parameters

ÉMILIE THÉLIE – 21th March 2023

Nice seminar

Indirect observations of the reionisation process: what do we learn?

Reionisation history:

time evolution of the reionisation process

Luminosity functions of galaxies:

constraints on e.g. star formation rate (SFR) & galaxy parameters

- Observed OV luminosity functions at z = 0

ÉMILIE THÉLIE – 21th March 2023

Direct observations of the reionisation process

= distribution of neutral hydrogen gas at many frequencies

• 21 cm signal: $\delta T_b(z) \sim x_{HI}(z)(1 + \delta_b(z))F(T)$

Direct observations of the reionisation process

 Upcoming observations of the brightness temperature with the 21 cm signal

= distribution of neutral hydrogen gas at many frequencies

• 21 cm signal: $\delta T_b(z) \sim x_{HI}(z)(1 + \delta_b(z))F(T)$

Direct observations of the reionisation process

- Upcoming observations of the brightness temperature with the 21 cm signal
 - = distribution of neutral hydrogen gas at many frequencies
- 21 cm signal: $\delta T_b(z) \sim x_{HI}(z)(1 + \delta_b(z))F(T)$

We have now **limits on the 21 cm power spectrum** that will be useful to constrain on astrophysical parameters and the reionisation process. → e.g. "IGM must have been heated above the adiabatic

cooling", maybe by X-ray photons.

Direct observations of the reionisation process

- Upcoming observations of the brightness temperature with the 21 cm signal
 - = distribution of neutral hydrogen gas at many frequencies
- 21 cm signal: $\delta T_b(z) \sim x_{HI}(z)(1 + \delta_b(z))F(T)$

(> 1 cGpc)
Resolution (see Giri+18):
On the plane of the sky:
> 7 cMpc for z > 6.5
In the frequency direction:
> 1 cMpc

SKA-Low characteristics:

 $50 - 350 \text{ MHz} \sim z \in [6, 25]$

200 square degrees

Redshifts range:

Field of view:

2D images of the 21 cm signal at many frequencies: $\delta T_b(z)$ 21 cmFAST semi-analytical model (256 cMpc/h)

Hiegel, Thélie+ (in prep.)

ÉMILIE THÉLIE – 21th March 2023

Nice seminar

INTRODUCTION The Epoch of Reionisation (EoR)

Physical properties of individual sources (e.g. luminosity, spectrum, f_{esc} fraction)

Properties of the source population (e.g. number density, time evolution, spatial distribution)

CoDa II (64 cMpc/h)

Properties of the gas density field (e.g. ionisation fraction)

Effects of the first generation of sources on the IGM (through e.g. ionisation, photoheating, shock-heating, chemical enrichment)

THE EPOCH OF REIONISATION & ITS OBSERVATIONS

TOPOLOGY OF MODELS OF THE REIONISATION PROCESS

ÉMILIE THÉLIE – 21th March 2023

Map of reionisation times:

- Local histories of reionisation of the gas
- Spatial and temporal information about the reionisation process

Map of reionisation times:

- Local histories of reionisation of the gas
- Spatial and temporal information about the reionisation process

Reionisation simulations:

- EMMA cosmological simulations (Aubert+15) or 21 cmFAST semi-analytical models (Mesinger+11)
- Large scales: box size >128 cMpc/h, I cMpc/h resolution

Topology as seen through a mountainous landscape

Credit: C. Gay thesis (2011)

Altitude isocontours (IGN map)

 Mountainous landscape = 2D field with the altitude as the field value

Topology as seen through a mountainous landscape

Altitude isocontours (IGN map)

 Mountainous landscape = 2D field with the altitude as the field value

Topology as seen through a mountainous landscape

Altitude isocontours (IGN map)

- Mountainous landscape = 2D field with the altitude as the field value
- Set of valleys = segmentation in void patches
- Set of ridge lines = skeleton

Evolving topology of the EoR

EMMA cosmological simulation maps (512 cMpc/h)

Thélie+ (arxiv:2209.11608)

Minima:

- "Reionisation seeds": sources from which the ionisation fronts propagate
- First places to reionise

Evolving topology of the EoR

EMMA cosmological simulation maps (512 cMpc/h)

Thélie+ (arxiv:2209.11608)

Minima:

- "Reionisation seeds": sources from which the ionisation fronts propagate
- First places to reionise

Isocontours:

- Regions reached by ionisation fronts at the same time
- Size evolution of bubbles

Evolving topology of the EoR

"Reionisation seeds":

sources from which the

First places to reionise

EMMA cosmological simulation maps (512 cMpc/h)

Thélie+ (arxiv:2209.11608)

Reionisation patches:

Extension of the radiative influence of a source

Patches edges = skeleton:

Percolation lines between ionisation fronts

Isocontours:

Minima:

- Regions reached by ionisation fronts at the same time
- Size evolution of bubbles

Evolving topology of the EoR

EMMA cosmological simulation maps (512 cMpc/h)

Thélie+ (arxiv:2209.11608)

Minima:

- "Reionisation seeds": sources from which the ionisation fronts propagate
- First places to reionise

Isocontours:

- Regions reached by ionisation fronts at the same time
- Size evolution of bubbles

What can we do with it?

Analysing this map:

- Comparisons between models of simulations
- Geometrical characterisation of models of the EoR
- Comparison to the gaussian random fields theory
- Study of the evolving topology of the reionisation process

RESULTS

A. REIONISATION TIMES RECONSTRUCTED FROM THE 21 CM SIGNAL Hiegel, Thélie+ (to be submitted)

B. PROPAGATION OF IONISATION FRONTS AROUND MATTER FILAMENTS Thélie+22 (A&A)

C. REIONISATION TIMES: TOPOLOGY AND GAUSSIAN RANDOM FIELD (GRF) THEORY Thélie+ (accepted for publication in A&A, arXiv: 2209.11608)

A.21 CM TO t_{reion} Reconstruction of reionisation times from 21 cm signal maps

Is it possible to reconstruct reionisation times maps from observations?

Future observations with SKA :

- 2D maps on the plane of the sky...
- ... of neutral gas distribution during the EoR...
- ... at many observational redshifts

A.21 CMTO t_{reion} Convolutional neural network (CNN)

CNN

- Developed with Tensorflow and Keras
- U-net: 2 parts with the same number of images and filters
 - Encoder = convolve and reduce dimension
 - Decoder = deconvolve and increase back to original dimension

A.21 CMTO t_{reion} Convolutional neural network (CNN)

CNN

- Developed with Tensorflow and Keras
- U-net: 2 parts with the same number of images and filters
 - Encoder = convolve and reduce dimension
 - Decoder = deconvolve and increase back to original dimension

SIMULATIONS

- 50 21 cmFAST semi-analytical simulations (256 cMpc/h)
- 2 models of reionisation with varying ionisation emissivity of galaxies $\zeta \in \{30, 55\}$

A.21 CMTO t_{reion} Convolutional neural network (CNN)

CNN

- Developed with Tensorflow and Keras
- U-net: 2 parts with the same number of images and filters
 - Encoder = convolve and reduce dimension
 - Decoder = deconvolve and increase back to original dimension

SIMULATIONS

- 50 21 cmFAST semi-analytical simulations (256 cMpc/h)
- 2 models of reionisation with varying ionisation emissivity of galaxies $\zeta \in \{30, 55\}$

LEARNING

- One prediction per observational redshift
- 35,000 images:
 - 90% for the training set
 - I 0% for the test set

ÉMILIE THÉLIE – 21th March 2023

A.21 CM TO t_{reion} Reconstruction of reionisation times from 21 cm signal maps

21 cmFAST semi-analytical model (256 cMpc/h)

Hiegel, Thélie+ (in prep.)

 Example with z_{obs} = 11: less small structures but really close to the true map

A.21 CMTO *t*_{reion} Reconstruction of reionisation times from 21 cm signal maps

A.21 CMTO *t*_{reion}

Reconstruction of reionisation times from 21 cm signal maps including instrumental noise

RESULTS

A. REIONISATION TIMES RECONSTRUCTED FROM THE 21 CM SIGNAL Hiegel, Thélie+ (to be submitted)

B. PROPAGATION OF IONISATION FRONTS AROUND MATTER FILAMENTS Thélie+22 (A&A)

C. REIONISATION TIMES: TOPOLOGY AND GAUSSIAN RANDOM FIELD (GRF) THEORY Thélie+ (accepted for publication in A&A, arXiv: 2209.11608)

ÉMILIE THÉLIE – 21th March 2023

Propagation of ionisations fronts in 21 cmFAST maps

How does the radiation from reionisation sources propagate?

Analysis of the **topology of reionisation redshifts** with **DisPerSE** (Sousbie+11):

- Radiative influence of reionisation sources on their environment: orientation of
 - reionisation patches with respect to the matter filaments
- Geometry of reionisation patches, percolation

Z_{reion}

- Maxima = first places to reionise
- Propagation of ionisation fronts along gradient lines
- Reionisation patches = extension of radiative influence of the sources

Results: orientation of patches with respect to filaments

Reionisation patches shape

- Triaxiality parameter: $T = \frac{\lambda_3^2 \lambda_2^2}{\lambda_3^2 \lambda_1^2}$
- Majority of prolate patches

Orientation of reionisation patches with respect to matter filaments

 Majority of aligned patches to the matter filaments

Results: orientation of patches with respect to filaments

RESULTS

A. REIONISATION TIMES RECONSTRUCTED FROM THE 21 CM SIGNAL Hiegel, Thélie+ (to be submitted)

B. PROPAGATION OF IONISATION FRONTS AROUND MATTER FILAMENTS Thélie+22 (A&A)

C. REIONISATION TIMES: TOPOLOGY AND GAUSSIAN RANDOM FIELD (GRF) THEORY

Thélie+ (accepted for publication in A&A, arXiv: 2209.11608)

Characterisation of the evolving topology of the EoR

How to characterise the evolution of reionisation?

By using topological statistics that are...

- ... measurable in reionisation times maps,
- ... predictable with GRF theory,
- ... and entirely defined with the power spectrum of the gaussian field

Gaussian random fields theory (Rice+44, Longuet-Higgins+57, Bardeen+86, Gay+12)

Simulation measurements & GRFs predictions

- Isocontours = regions reached by ionisation fronts at the same time
 → follow the size evolution of ionised/neutral bubbles
- EMMA measurements close to gaussian predictions

Simulation measurements & GRFs predictions

- Isocontours = regions reached by ionisation fronts at the same time
 → follow the size evolution of ionised/neutral bubbles
- EMMA measurements close to gaussian predictions

Simulation measurements & GRFs predictions

- When R_f >: EMMA measurements more symmetric
- $R_f \in \{1, 2\}$: asymmetry (nongaussianity)
 - Slow reionisation before it accelerates
 - Acceleration of ionisation fronts at the end of the EoR

CONCLUSIONS & PERSPECTIVES

How does the EoR happen?

Topological studies to analyse:

- Growth of structures
- Ionised/neutral bubbles geometry, distribution, organisation
- Percolation, evolution of the process

Reionisation times

- Geometrical characterisation of different EoR model
- Comparisons of cosmological and semi-analytical simulations

A.21 CM $\rightarrow t_{reion}$

- Good reconstruction of reionisation times map, even if they are a little bit smoothed (with and without noise)
- Best reconstructions with observed redshifts 8 < z < 12

B. Reionisation patches

- Beaded sources along the matter filaments
- Minority of butterflies (isolated sources or strong emitters)

C. Reionisation times: topology and GRFs theory

- Diverse statistics on the evolution of the reionisation process...
- ... that are analytically computable t_{reion}

CONCLUSIONS & PERSPECTIVES

How does the EoR happen?

Topological studies to analyse:

- Growth of structures
- Ionised/neutral bubbles geometry, distribution, organisation
- Percolation, evolution of the process

A.21 CM \rightarrow t_{reion}

- Good reconstruction of reionisation times map, even if they are a little bit smoothed (with and without noise)
- Best reconstructions with observed redshifts 8 < z < 12

B. Reionisation patches

- Beaded sources along the matter filaments
- Minority of butterflies (isolated sources or strong emitters)

C. Reionisation times: topology and GRFs theory

- Diverse statistics on the evolution of the reionisation process...
- ... that are analytically computable t_{reion}

Thank you for your attention!

Reionisation times

- Geometrical characterisation of different EoR model
- Comparisons of cosmological and semi-analytical simulations
 - Improving the neural network to reconstruct well the small scales
 - Topological analyses of the CNN reconstructions
 t_{reion} maps

- Take into account the asymmetries in the GRFs predictions (e.g. with Gram-Charlier expansion)
- Same study but with larger or more resolved simulations (e.g. with Dyablo)
- Inference of the power spectrum parameters from topological measurements

Topology of the reionisation process

Size of neutral and ionised bubbles

... with diverse methods (e.g. mean free path in Giri+19, spherical averages in Giri+18) Analyses of spatial structures ... with 21 cm power spectra (e.g. Gazagnes+21) and bispectra (e.g. Hutter+20) Counts of 3D structures like peaks, tunnels and voids ... with Betti numbers and Euler characterstic (e.g. Giri+20, Bianco+21)

- BSD → early phases of the EoR
 ISD → late phases of the EoR
- BSD/ISD are different depending on the way to measure it: they give different information on the size properties of bubbles.

ÉMILIE THÉLIE – 21th March 2023

INTRODUCTION Topology of the reionisation process

Size of neutral and ionised bubbles ... with diverse methods (e.g. mean free path in Giri+19, spherical averages in Giri+18)

Analyses of spatial structures

... with 21 cm power spectra (e.g. Gazagnes+21) and **bispectra** (e.g. Hutter+20)

 $x_{HI} = 0.30$ $x_{HI} = 0.51$ 비 0.2 PDF 0.2 0.0 0.0 坦 10⁻¹ ш 10⁻¹ 10-3 10-3 10¹ 10² 10⁰ 10¹ 10² 10⁰ R[Mpc] R[Mpc] $x_{HI} = 0.67$ *x_{HI}*=0.80 40.2 PDF 0.2 0.0 0.0 斑 10⁻¹ ₩ ^{10⁻¹} 10^{-3} · 10^{-3} 10² 10^{0} 10^{1} 10² 10^{1} 10^{0} Shimabukuro+21 R[Mpc] R[Mpc]

Counts of 3D structures like peaks, tunnels and voids ... with Betti numbers and Euler characterstic (e.g. Giri+20, Bianco+21)

Example of (model dependent) predictions of **BSD**s from the 21 cm power spectrum.

Use of an **artificial neural network** (ANN).

 \rightarrow The observed 21 cm power spectrum will be a tracer of the BSD, which will help us to understand the bubble geometry and its time evolution.

ÉMILIE THÉLIE – 21th March 2023

Nice seminar

True

ANN

INTRODUCTION Topology of the reionisation process

Size of neutral and ionised bubbles ... with diverse methods (e.g. mean free path in Giri+19, spherical averages in Giri+18) Analyses of spatial structures ... with 21 cm power spectra (e.g. Gazagnes+21) and bispectra (e.g. Hutter+20)

Counts of 3D structures like peaks, tunnels and voids ... with Betti numbers and Euler characterstic (e.g. Giri+20, Bianco+21)

- β_k = rank of the k_{th} homology group → number of connected components, ID holes, 2D cavities...
- They trace the evolution of the HII regions topology.
- They can be parametrized as a function of $x_{H_{II}}$ (Giri+19).
- They are more informative than the Euler characteristic $\chi = \beta_0 \beta_1 + \beta_2$.

ÉMILIE THÉLIE – 21th March 2023

Topology of the reionisation process with DisPerSE

Discrete Persistent Structure Extractor (Sousbie+II)

- Morse theory and persistent homology
- Extracts topological features from a field thanks to a mathematical approach

Dark matter density

Voids

Walls

Filaments

ÉMILIE THÉLIE – 21th March 2023

A.21 CM $\rightarrow t_{reion}$ Monitoring performances of the CNN

ÉMILIE THÉLIE – 21th March 2023

A.21 CM $\rightarrow t_{reion}$ Monitoring performances of the CNN

ÉMILIE THÉLIE – 21th March 2023

Nice seminar

ÉMILIE THÉLIE – 21th March 2023

B. PATCHS DE REIONISATION

Simulations

21 cmFAST semi-analytical simulations (128³ cellules - 128³ cMpc³/h³; Mesinger+11):

- ζ : galaxies ionising efficiency
- $T_{vir} \sim M_{min}^3$: minimal virial temperature so that a halo start to form stars

EMMA cosmological simulations (512³ cellules - 512³ cMpc³/h³ ;Aubert+15,Gillet+21) :

■ Mass resolution for the stellar particle $(10^7 M_{\odot})$ for the Mslow one and $10^8 M_{\odot}$ for the other)

ÉMILIE THÉLIE – 21th March 2023

Patches shape

• Triaxiality parameter: $T = \frac{\lambda_3^2 - \lambda_2^2}{\lambda_2^2 - \lambda_1^2}$

- Majority of prolate patches
- Less prolate patches for halos that are stronger emitter and more massive

ÉMILIE THÉLIE – 21th March 2023

Orientation of patches with respect to the matter filaments

- Majority of aligned patches to the matter filaments
- Less aligned patches for halos that are stronger emitter and more massive

Thélie+22

ÉMILIE THÉLIE – 21th March 2023

Shape vs. orientation of patches with respect to the matter filaments

B. PATCHS DE REIONISATION

Comparaison avec EMMA, une simulation cosmologique

- Same conclusions for both type of simulations
- BUT EMMA can also produce models with rather different topologies (for the same x_{HII}(z))

ÉMILIE THÉLIE – 21th March 2023

Simulation measurements & GRFs predictions

- PDF of reionisation times = counts the number of cells that have reionised as a function of time
- CDF of reionisation time \rightarrow reionisation history
- EMMA measurements close to gaussian predictions

Simulation measurements & GRFs predictions

- PDF of reionisation times = counts the number of cells that have reionised as a function of time
- CDF of reionisation time \rightarrow reionisation history
- EMMA measurements close to gaussian predictions

PDF of the gradients field norm: ionisation fronts speed

- R_f > : EMMA measurements more symmetric
- $R_f \in \{1, 2\}$: imprints of nongaussianity in the form of an asymmetry
 - = acceleration of the ionisation fronts at the end of the EoR

ÉMILIE THÉLIE – 21th March 2023

PDF of the field value at its minima: reionisation seed counts

Skeleton length: places where the ionisation fronts percolate

$$L^{\text{tot}} = \left(\frac{1}{8} + \frac{\sqrt{2}}{4\pi}\right) \frac{1}{R_*}$$

- "Stiff" approximation + global (measurements) or local (GRFs) calculations → predictions underestimating the skeleton length: measurements have to be renormalised
- $R_f \nearrow$: EMMA measurements more symmetric
- $R_f \in \{1, 2\}$: asymmetry
 - = acceleration of ionisation fronts at the end of the EoR

Comparisons with 21 cmFAST

- Same behaviour as the EMMA measurements globally
- $R_f \nearrow : 21 \text{ cmFAST}$ measurements more symmetric
- $R_f \in \{1, 2, 6\}$: asymmetry because of the absence of modelisation of radiation propagation within 21 cmFAST

