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δ(1)

c = 1.68
δc = 177

Cosmology,  
N.Vittorio 


(CRC Press 2018)

On the infall of matter into clusters of galaxies and some effects on their evolution, 

J.E.Gunn and J.R.Gott (ApJ. 1972)

Top-Hat Spherical Collapse Model

Introduction

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

ρ
R
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Introduction

Implement initial conditions of an inhomogeneous ￼ CDM universe, from a 
fully growing mode defined from the curvature perturbation ￼ .


Explore the validity of the top-hat spherical collapse model.


Gravito-electromagnetic characterisation of this simulation.

Classify the spacetime according to its Petrov type.

Λ
ℛc

Objective: Study the growth of large scale structures with 
simulations in numerical relativity.

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

https://github.com/robynlm/ebweyl_pub
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Introduction

Objective: Study the growth of large scale structures with 
simulations in numerical relativity.
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robynlm
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Initial Conditions

Background:  
Flat FLRW metric, 

￼ CDM with pressureless perfect fluid, 

Matter-dominated era. 

Inhomogeneity: 
Synchronous and comoving gauge

Scalar perturbations, 


Non-Gaussian initial conditions in ￼ CDM: Newtonian, relativistic, and primordial contributions, 
M.Bruni, J.C.Hidalgo, N.Meures and D.Wands (ApJ. 2014)


Comoving  
Curvature Perturbation:    ￼   ￼    ￼   ￼   ￼   and  ￼     ￼    ￼

Λ

Λ

ℛc γij Kij
(3)R ρ

From the 

Hamiltonian

constraint

equation

Perturbed up 
to 1st order

￼  and ￼  are used to quantify 
perturbations created during inflation

￼  is gauge invariant at first order

￼

ℛc ζ(1)

ℛc·ℛc = 0

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

Spatial 

metric

Extrinsic 

curvature

3 Ricci

scalar

Energy 

density
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Initial Conditions

δ

￼ℛc = Apert [sin ( 2πx
λpert ) + sin ( 2πy

λpert ) + sin ( 2πz
λpert )]

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Initial Conditions

δ

￼ℛc = Apert [sin ( 2πx
λpert ) + sin ( 2πy

λpert ) + sin ( 2πz
λpert )]
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Initial Conditions

δ

￼ℛc = Apert [sin ( 2πx
λpert ) + sin ( 2πy

λpert ) + sin ( 2πz
λpert )]
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Initial Conditions

I wrote a Fortran thorn to

implement these initial conditions


in Einstein Toolkit

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

robynlm
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Collapse evolution

 Evolution of each position in the simulation box in proper length 

with respect to the centre of the over-density

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Collapse evolution

 Evolution of each position in the simulation box in proper length 

with respect to the centre of the over-density
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Collapse evolution

 Evolution of each position in the simulation box in proper length 

with respect to the centre of the over-density
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Perturbation in: 
Matter density:                 Trace of expansion:         Determinant                    Conformal

                                                                                  of spatial metric:             3 Ricci scalar:


￼                               ￼                         ￼                           ￼  δ = ρ/ρ̄ − 1 δΘ = Θ/Θ̄ − 1 δγ = γ/γ̄ − 1 a2(3)R

￼14

￼      ￼ Mpc    ￼δOD, IN = 3 × 10−2 λpert = 1821 zIN = 302.5

Collapse evolution

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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￼      ￼ Mpc    ￼δOD, IN = 3 × 10−2 λpert = 1821 zIN = 302.5

Collapse evolution

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

Local conformal 3 Ricci scalar:

                   ￼  γ

1
3 (3)R
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Collapse evolution

At the peak of the over-density the 

top-hat spherical collapse model is an excellent 

approximation.

*Correction

￼  
￼

δOD, IN = 3.10−2

δ(1) = δIN a /aIN

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

￼Θ = 0



￼17

Collapse evolution

The proper radius of a comoving sphere centred on the 

over-density compared to the spherical collapse model with ￼  .δ = ⟨δ⟩𝒟

At large radii, the spherical collapse model is no 
longer a good fit as it overestimates collapse time.

Robyn L. Munoz  -  ICG, University of Portsmouth, UK



Collapse evolution
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·Θ +
1
3

Θ2 + 2σ2 +
κρ
2

− Λ = 0Contributions to the  
Raychaudhuri equation

At Turn around Right before the crash

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

￼  expansion,       ￼  shear,       ￼ ,       ￼  energy density,       ￼  cosmological constantΘ σ2 κ = 8π ρ Λ
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Collapse evolution

Expanding 
region

Infalling 
region

Turn-around boundary ￼Θ = 0

The expansion of the turn-around boundary depends on the initial distribution.


The directions going through under-dense regions eventually

 stop expanding their infalling region and reduce in size.

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

￼|Θ |￼|Θ |
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Gravito-electromagnetism with EBWeyl

Riemann tensor:                                  Ricci Tensor:                                            Ricci Scalar: 
         ￼                                                     ￼                                                               ￼Rαβμν Rβν R

Trace Trace

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Riemann tensor:                    Weyl tensor: 
         ￼                                     ￼Rαβμν Cαβμν

Traceless

part

    Electric part:               Magnetic part: 
 ￼            ￼Eαμ = uβuνCαβμν Bβν = uαuμC*αβμν

Projection along the fluid

Gauge invariant at 1st order 
The Stewart-Walker lemma states that, at 1st order, perturbations of covariant quantities


 are gauge invariant if their background value vanishes. 

J.M.Stewart and M.Walker (1974)


An FLRW universe is conformally flat, so ￼ , therefore they are gauge invariant at 1st order.


However ￼  and ￼  are frame dependent so we consider the comoving frame.


Physically meaningful 

￼  


￼

Eαβ = Bαβ = 0
Eαβ Bαβ

Eαβ = ℜ(Ψ2)eαβ
C +

1
2

ℜ(Ψ0 + Ψ4)eαβ
T+ +

1
2

ℑ(Ψ0 − Ψ4)eαβ
T× − 2ℜ(Ψ1 − Ψ3)e(α

1 eβ)
2 − 2ℑ(Ψ1 + Ψ3)e(α

1 eβ)
3 ≃

1
2

DαDβ(Ψ + Φ)

Bαβ = − ℑ(Ψ2)eαβ
C −

1
2

ℑ(Ψ0 + Ψ4)eαβ
T+ +

1
2

ℜ(Ψ0 − Ψ4)eαβ
T× + 2ℑ(Ψ1 − Ψ3)e(α

1 eβ)
2 − 2ℜ(Ψ1 + Ψ3)e(α

1 eβ)
3 ≃ 0

Gravito-electromagnetism with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

With the Weyl scalars ￼Ψ0...4

￼  and ￼  the 
Bardeen 

potentials

Ψ Φ

At first order 
with only scalar 
perturbations

Gravitational WavesFrame Dragging

Gravitational pull
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Riemann tensor:                    Weyl tensor: 
         ￼                                     ￼Rαβμν Cαβμν

Traceless

part

    Electric part:               Magnetic part: 
 ￼            ￼Eαμ = uβuνCαβμν Bβν = uαuμC*αβμν

Projection along the fluid

|E | = EαβEαβ

Gravito-electromagnetism with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Gravito-electromagnetism with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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“ in type-N and III spacetimes 
￼  ”


The electric and magnetic Weyl tensors, 

W.B.Bonnor 


(Class. Quantum Gravity 1995)

EαβEαβ = BαβBαβ > 0

Gravito-electromagnetism with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Exact Solutions to Einstein’s Field Equations 2nd Edition,  
H.Stephani, D.Kramer, M.MacCallum, C.Hoenselaers and E.Herlt (C.U.P. 2003)

Classification of Petrov type

Rotate the tetrad frame to minimise the 
number of non-zero Well scalars


principal null direction 

Need to solve 4th-order complex 
polynomial


Instead, compute the discriminant

Construct the complex scalar invariants


I, J, K, L, N

Classification of Petrov type with EBWeyl

Riemann tensor:                    Weyl tensor: 
         ￼                                     ￼Rαβμν Cαβμν

Traceless

part

Projection along a 
null tetrad basis

￼  

With ￼  an arbitrary

 null tetrad basis

Ψ0 = Cαβμνlαmβlμmν

Ψ1 = Cαβμνlαkβlμmν

Ψ2 = Cαβμνlαmβmμkν

Ψ3 = Cαβμνlαkβmμkν

Ψ4 = Cαβμνkαmβkμmν

(lμ, kμ, mμ, m̄μ)

Weyl Scalars  
Newmann-Penrose formalism


Robyn L. Munoz  -  ICG, University of Portsmouth, UK



O N III

D II

I
all ≠ 0

Ψ2 ≠ 0

Ψ4 ≠ 0

Ψ2 & Ψ4 ≠ 0

Ψ3 ≠ 0Cαβμν = 0
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

Weyl tensor: 
￼Cαβμν

￼Ψ0, Ψ1, Ψ2, Ψ3, Ψ4

Projection along the 

principal null direction



O N III

D II

I
all ≠ 0

Ψ2 ≠ 0

Ψ4 ≠ 0

Ψ2 & Ψ4 ≠ 0

Ψ3 ≠ 0Cαβμν = 0
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

Spacetimes of type O are conformally flat,

e.g. Minkowski and FLRW.



O N III

D II

I
all ≠ 0

Ψ2 ≠ 0

Ψ4 ≠ 0

Ψ2 & Ψ4 ≠ 0

Ψ3 ≠ 0Cαβμν = 0
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

The Gravitational Compass,  
P.Szekeres (J. Math. Phys. 1965)  ￼  generates a 


transverse geodesic deviation
Ψ4

Credit: ESA–C.Carreau

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

Spacetimes with pure 

transverse gravitational waves



O N III

D II

I
all ≠ 0

Ψ2 ≠ 0

Ψ4 ≠ 0

Ψ2 & Ψ4 ≠ 0

Ψ3 ≠ 0Cαβμν = 0
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

The Gravitational Compass,  
P.Szekeres (J. Math. Phys. 1965)  ￼  generates a 


longitudinal tidal distortion
Ψ3

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

Spacetimes with pure 

longitudinal gravitational waves



O N III

D II

I
all ≠ 0

Ψ2 ≠ 0

Ψ4 ≠ 0

Ψ2 & Ψ4 ≠ 0

Ψ3 ≠ 0Cαβμν = 0
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

The Gravitational Compass,  
P.Szekeres (J. Math. Phys. 1965)  ￼  generates a tidal 

distortion associated with a 
Coulomb-type field

ℜ(Ψ2)

￼  associated 
with frame dragging
ℑ(Ψ2)

Credit: Michael Cramer Andersen

Robyn L. Munoz  -  ICG, University of Portsmouth, UK

e.g. Schwarzschild, 

Kerr, Szekeres



O N III

D II

I
all ≠ 0
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Ψ3 ≠ 0Cαβμν = 0
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

The Gravitational Compass,  
P.Szekeres (J. Math. Phys. 1965)
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Classification of Petrov type with EBWeyl

Exact Solutions to Einstein’s Field Equations 
2nd Edition,  

H.Stephani, D.Kramer, M.MacCallum, 
C.Hoenselaers and E.Herlt (C.U.P. 2003)

The Gravitational Compass,  
P.Szekeres (J. Math. Phys. 1965)

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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|E| = |B| = 0
Cutoff = 0.01

I3 - 27 J2 = 0
Cutoff = 0.2

I = J = 0
Cutoff =  0.05

no

yes

Classification 
of Petrov type

K = L = 0
Cutoff = 0.025

K = N = 0
Cutoff = 0.025

yes

yes

yes

yes

no

no

no

no
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Exact Solutions to Einstein’s Field Equations 2nd Edition,  
H.Stephani, D.Kramer, M.MacCallum, C.Hoenselaers and E.Herlt (C.U.P. 2003)


Numerically, none of these are zero ￼  type I everywhere→

Classification of Petrov type with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Exact Solutions to Einstein’s Field Equations 2nd Edition,  
H.Stephani, D.Kramer, M.MacCallum, C.Hoenselaers and E.Herlt (C.U.P. 2003)


Numerically, none of these are zero ￼  type I everywhere→
The “If” condition needs to be  

normalised, e.g. : ￼  
 and have a threshold: 

V = |Re(I1/2) | /H2

￼ V < Cutoff AND
(V > Error OR Cutoff > Error)

Classification of Petrov type with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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 Transition from

          O ￼  N ￼  D ￼  II ￼  I.


 Strong presence of type N, that 
of gravitational wave 
spacetimes. 


 In the very centre of the over-
density, it is type O. This is 
consistent with the spherical 
collapse model.


 Mostly D along the filaments.


 O remains in the under-density 
as it is conformally flat.

→ → → →

Classification of Petrov type with EBWeyl

Robyn L. Munoz  -  ICG, University of Portsmouth, UK
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Conclusion

Future ventures: 
• Study the evolution of regions of ￼ -￼  Msun that include anisotropy & deviation from spherical symmetry

• Different initial curvature perturbation, mode coupling, extend ICPertFLRW

• Different gauges and characterise gauge invariant variables

1012 1016

 At the peak of the over-density, the spherical collapse model is an excellent approximation. 
This is because we find that the shear is locally negligible. Then, neglecting the shear in the 
Raychaudhuri equation gives the spherical collapse model.


 The spacetime is of Petrov type I, however the leading order type transitions from a 
special to general spacetime with notably a strong presence of type N. 


 We have type O in the under-density and its surrounding region, and in the centre of 
the over-density. This is in line with the spherical collapse model. 


 The electric part of the Weyl tensor is strongest along the filaments, with significant 
divergence. The magnetic part is strongest around the filaments, with significant curl. 
Type D is predominant along the filaments.

robyn.munoz@port.ac.uk
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