"When astroparticles meet plasma turbulence" micro-physics of cosmic-ray transport in the Galaxy

Laboratoire Lagrange, CNRS, Observatoire de la Côte d'Azur, Université Côte d'Azur

O. Fornieri (GSSI L'Aquila), **D. Gaggero** (IFT Madrid → U. de Valencia), **P. De La Torre Luque** (Stockholm U.), **S. Gabici** (APC Paris)

Lagrange Seminar — 28 June 2022

Silvio S. Cerri

Collaborators:

Context & Motivation

The cosmic-ray (CR) spectrum and its implications

2. CR diffusion in magneto-hydrodynamic (MHD) turbulence

Alfvénic turbulence: inefficiency of CR scattering Contributions of other MHD modes

3. Recent numerical results [Fornieri et al., MNRAS (2021)]

Diffusion-coefficient solver for MHD modes The DRAGON code: global CR-transport simulations

4. Perspectives

- "Knee" at E ~ 10^{6} - 10^{7} GeV = 1-10 PeV
- "Ankle" at $E \sim 10^9 10^{10} \text{ GeV} = 1 10 \text{ EeV}$

- "Solar modulation" at E ≤ 30 GeV
- "Knee" at E ~ 10^{6} - 10^{7} GeV = 1-10 PeV
- "Ankle" at $E \sim 10^9 10^{10} \text{ GeV} = 1 10 \text{ EeV}$

...but the devil is in the details

$N_{ m inj}(E) \propto E^{-\gamma_{ m inj}}$

 $N_{
m inj}(E) \propto$

″'/inj

Plasma micro-physics related to injection/acceleration at SNRs shocks [X not treated in this talk]

$N_{\rm inj}(E) \propto E^{-\gamma_{\rm inj}}$

 $D(E) \propto E^{\delta}$

- self-generated turbulence ($E \leq 200 \text{ GeV}$) [X not treated in this talk]
- *pre-existing turbulence* (E ≥ 200 GeV) [*this talk will focus on this*]

 $N_{\rm inj}(E) \propto E^{-\gamma_{\rm inj}}$

 \Rightarrow

 $D(E) \propto E^{\delta}$

 $N_{\rm inj}(E) \propto E^{-\gamma_{\rm inj}}$ $\Rightarrow \qquad F(E) \sim \frac{N(E)}{D(E)}$ $D(E) \propto E^{\delta}$ $F_{\rm pri}(E) \sim \frac{N_{\rm inj}(E)}{D(E)} \propto E^{-\gamma_{\rm inj}-\delta}$ \Rightarrow $F_{\rm sec}(E) \sim \frac{E^{-\gamma_{\rm inj}-\delta}}{D(E)} \propto E^{-\gamma_{\rm inj}-2\delta}$

 $N_{\rm inj}(E) \propto E^{-\gamma_{\rm inj}}$ $\Rightarrow \qquad F(E) \sim \frac{N(E)}{D(E)}$ $D(E) \propto E^{\delta}$ $F_{\rm pri}(E) \sim \frac{N_{\rm inj}(E)}{D(E)} \propto E^{-\gamma_{\rm inj}-\delta}$ \Rightarrow $F_{\rm sec}(E) \sim \frac{E^{-\gamma_{\rm inj}-\delta}}{D(E)} \propto E^{-\gamma_{\rm inj}-2\delta}$ $F_{\rm sec}(E)$ $\propto E^{-\delta}$ \Rightarrow

CR diffusion

so from Boron-to-Carbon (B/C) ratio one estimates that for, e.g., $E_{CR} \sim 10$ GeV/nucleon, it is $X \sim 10$ g cm⁻²

$$X(E) \sim \overline{m}_{\text{gas}} n_{\text{disk}} \frac{h_{\text{disk}}}{H_{\text{halo}}} v \tau_{\text{esc}}(E)$$

so from Boron-to-Carbon (B/C) ratio one estimates that for, e.g., $E_{CR} \sim 10$ GeV/nucleon, it is $X \sim 10$ g cm⁻²

so use typical Galactic values (e.g., $m_{gas} \sim 1.4 m_p$, $n_{disk} \sim 1 \text{ cm}^3$, $h_{disk} \sim 150 \text{ pc}$, $H_{halo} \sim 3 \text{ kpc}$) and $v \sim c$:

 $\tau_{\rm esc}(10\,{\rm GeV/n}) \sim 10{-}100\,{\rm M}$

$$X(E) \sim \overline{m}_{\text{gas}} n_{\text{disk}} \frac{h_{\text{disk}}}{H_{\text{halo}}} v \tau_{\text{esc}}(E)$$

$${
m Myr} \quad \gg \quad au_{
m bal} \sim rac{H}{c} \, \sim \, 1{-}10 \, {
m kyr}$$

solution from Boron-to-Carbon (B/C) ratio one estimates that for, e.g., $E_{CR} \sim 10$ GeV/nucleon, it is $X \sim 10$ g cm⁻²

so use typical Galactic values (e.g., $m_{gas} \sim 1.4 m_p$, $n_{disk} \sim 1 \text{ cm}^3$, $h_{disk} \sim 150 \text{ pc}$, $H_{halo} \sim 3 \text{ kpc}$) and $v \sim c$:

 $\tau_{\rm esc}(10\,{\rm GeV/n}) \sim 10{-}100\,{\rm M}$

⇒ there is a mechanism that confines CRs within the Galaxy for long time before they can escape

$$X(E) \sim \overline{m}_{\text{gas}} n_{\text{disk}} \frac{h_{\text{disk}}}{H_{\text{halo}}} v \tau_{\text{esc}}(E)$$

$${
m Myr} \quad \gg \quad au_{
m bal} \sim rac{H}{c} \, \sim \, 1{-}10 \, {
m kyr}$$

Turbulent cascade

 $r_{L, \mathrm{CR}} \sim E_{\mathrm{CR}}$

Turbulent cascade

k

fluctuations' wavenumber

 $r_{L, \,\mathrm{CR}} \sim E_{\mathrm{CR}}$

 $r_{L, CR} \sim E_{CR}$

CR diffusion

Turbulent cascade

 $\alpha_{k-\alpha}$

inertial range

conservative transfer through scales by non-linearities

k

fluctuations' wavenumber

 $r_{L, \, \mathrm{CR}} \sim E_{\mathrm{CR}}$

real incompressible MHD equations:

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} &= -\frac{\boldsymbol{\nabla} P_{\text{tot}}}{\varrho_0} + \frac{(\boldsymbol{B} \cdot \boldsymbol{\nabla})\boldsymbol{B}}{4\pi\varrho_0} + \nu \,\boldsymbol{\nabla}^2 \boldsymbol{u} & \boldsymbol{\nabla} \cdot \boldsymbol{u} \\ \frac{\partial \boldsymbol{B}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{B} &= (\boldsymbol{B} \cdot \boldsymbol{\nabla})\boldsymbol{u} + \eta \,\boldsymbol{\nabla}^2 \boldsymbol{B} & \boldsymbol{\nabla} \cdot \boldsymbol{B} \end{aligned}$$

CR diffusion

Turbulent cascade of Alfvénic fluctuations

incompressible MHD equations:

$$egin{aligned} & rac{\partial \, m{u}}{\partial t} \,+\, (m{u}\cdotm{
abla})m{u} \,=\, -rac{m{
abla} P_{ ext{tot}}}{arrho_0} \,+\, rac{(m{B}\cdotm{
abla})m{B}}{4\piarrho_0} \,+\,
u\,
abla^2m{u} \ & m{
abla}^2m{u} \ & m{
abla}^2m{u}$$

rewrite them in the Elsässer formulation ($\eta = v$):

$$egin{aligned} &rac{\partial \, oldsymbol{z}^+}{\partial t} \,+\, (oldsymbol{z}^- \cdot oldsymbol{
aligned}) oldsymbol{z}^+ \,=\, -oldsymbol{
aligned} \widetilde{P}_{ ext{tot}} \,+\, \eta \,
abla^2 oldsymbol{z}^+ \ &rac{\partial \, oldsymbol{z}^-}{\partial t} \,+\, (oldsymbol{z}^+ \cdot oldsymbol{
aligned}) oldsymbol{z}^- \,=\, -oldsymbol{
aligned} \widetilde{P}_{ ext{tot}} \,+\, \eta \,
abla^2 oldsymbol{z}^- \end{aligned}$$

CR diffusion

Turbulent cascade of Alfvénic fluctuations

$$oldsymbol{z}^{\pm} \doteq oldsymbol{u} \pm oldsymbol{z}^{\pm} = oldsymbol{\nabla} \cdot oldsymbol{z}^{\pm} =$$

real incompressible MHD equations:

$$egin{aligned} & rac{\partial \, m{u}}{\partial t} \,+\, (m{u}\cdotm{
abla})m{u} \,=\, -rac{m{
abla} P_{ ext{tot}}}{arrho_0} \,+\, rac{(m{B}\cdotm{
abla})m{B}}{4\piarrho_0} \,+\,
u\,
abla^2m{u} \ & m{
abla}^2m{u} \ & m{
abla}^2m{u}$$

rewrite them in the Elsässer formulation ($\eta = \nu$):

$$egin{aligned} &rac{\partial \, oldsymbol{z}^+}{\partial t} + (oldsymbol{z}^- \cdot oldsymbol{
abla}) oldsymbol{z}^+ &= -oldsymbol{
abla} \widetilde{P}_{ ext{tot}} + \eta \,
abla^2 oldsymbol{z}^+ &= & \mathbf{v} \pm oldsymbol{z}^\pm \\ &rac{\partial \, oldsymbol{z}^-}{\partial t} + (oldsymbol{z}^+ \cdot oldsymbol{
abla}) oldsymbol{z}^- &= & -oldsymbol{
abla} \widetilde{P}_{ ext{tot}} + \eta \,
abla^2 oldsymbol{z}^- &= & \mathbf{\nabla} \cdot oldsymbol{z}^\pm = & \mathbf{\nabla}$$

CR diffusion

Turbulent cascade of Alfvénic fluctuations

Alfvén waves traveling "up" or "down" the magnetic field **B**

incompressible MHD equations:

$$egin{aligned} & rac{\partial \, m{u}}{\partial t} \,+\, (m{u}\cdotm{
abla})m{u} \,=\, -rac{m{
abla} P_{ ext{tot}}}{arrho_0} \,+\, rac{(m{B}\cdotm{
abla})m{B}}{4\piarrho_0} \,+\,
u\,
abla^2m{u} \ & m{
abla}^2m{u} \ & m{
abla}^2m{u}$$

rewrite them in the Elsässer formulation ($\eta = v$):

CR diffusion

Turbulent cascade of Alfvénic fluctuations

$$oldsymbol{z}^{\pm} = - oldsymbol{
abel{eq: point}} \widetilde{P}_{ ext{tot}} + \eta \,
abla^2 oldsymbol{z}^\pm \qquad oldsymbol{z}^\pm \doteq oldsymbol{u} \pm oldsymbol{z}^\pm = \ oldsymbol{z}^\pm = - oldsymbol{
abel{eq: point}} \widetilde{P}_{ ext{tot}} + \eta \,
abla^2 oldsymbol{z}^- \qquad oldsymbol{
abel{eq: point}} \nabla \cdot oldsymbol{z}^\pm = \ oldsymbol{
abel{eq: point}}$$

non-linear interaction only between counter-propagating Alfvén waves

Turbulent cascade of Alfvénic fluctuations

^{cor} incompressible MHD equations:

rewrite them in the Elsässer formulation ($\eta = \nu$):

CR diffusion

non-linear interaction only between counter-propagating Alfvén waves

Turbulent cascade of Alfvénic fluctuations

split into "background + Alfvénic fluctuations":

CR diffusion

$$oldsymbol{B} = oldsymbol{B}_0 + \delta oldsymbol{B}_\perp$$

 $oldsymbol{u}=\mathcal{M}_0+\deltaoldsymbol{u}_\perp$

split into "background + Alfvénic fluctuations":

$$\Rightarrow \quad \left(\frac{\partial}{\partial t} \mp \boldsymbol{v}_{\mathrm{A}} \cdot \boldsymbol{\nabla}\right) \delta \boldsymbol{z}^{\pm} + (\delta \boldsymbol{z}^{\mp} \cdot \boldsymbol{\nabla}) \delta \boldsymbol{z}^{\pm}$$

CR diffusion

$^{\pm}$ = ... (!) turbulence needs finite dissipation!

split into "background + Alfvénic fluctuations":

$$\Rightarrow \qquad \left(\frac{\partial}{\partial t} \mp (v_{\mathrm{A}} \cdot \nabla) \delta z^{\pm} + (\delta z^{\mp} \cdot \nabla) \delta z^{\pm} \right)$$

linear frequency: $\omega_{\mathrm{A}} = k_{\parallel} v_{\mathrm{A}}$ non-linear

CR diffusion

 $= \dots (!)$ turbulence needs finite dissipation!

r frequency: $\omega_{\rm nl} = k_{\perp} \delta z^{\mp}$

split into "background + Alfvénic fluctuations":

$$\Rightarrow \qquad \left(\frac{\partial}{\partial t} \mp (v_{\mathrm{A}} \cdot \nabla) \delta z^{\pm} + (\delta z^{\mp} \cdot \nabla) \delta z^{\pm}\right)$$

linear frequency: $\omega_{\mathrm{A}} = k_{\parallel} v_{\mathrm{A}}$ non-linear

- $= \dots (!)$ turbulence needs finite dissipation!
- r frequency: $\omega_{\rm nl} = k_{\perp} \delta z^{\mp}$

split into "background + Alfvénic fluctuations":

$$\Rightarrow \qquad \left(\frac{\partial}{\partial t} \mp (v_{\mathrm{A}} \cdot \nabla) \delta z^{\pm} + (\delta z^{\mp} \cdot \nabla) \delta z^{\pm}\right)$$

linear frequency: $\omega_{\mathrm{A}} = k_{\parallel} v_{\mathrm{A}}$ non-linear

An initially weak Alfvénic cascade will increase ω_{nl} with decreasing perp. scale λ , and reach $\chi \sim 1$ at some scale λ_{CB} [Don't worry, I won't put you through all this! but see, e.g., Schekochihin, arXiv:2010.00699, and references therein]

CR diffusion

 $= \dots (!)$ turbulence needs finite dissipation! r frequency: $\omega_{\rm nl} = k_{\perp} \delta z^{\mp}$

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

[Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

If you were to compute the cascade time for counter-propagating AWs:

CR diffusion

$$au_{
m casc} \sim N \, au_{
m A} \sim rac{ au_{
m nl}^2}{ au_{
m A}} = rac{ au_{
m nl}}{\chi}$$

with $N \sim 1/\chi^2 \sim (\tau_{nl}/\tau_A)^2$ [# AW interactions]

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

If you were to compute the cascade time for counter-propagating AWs:

CR diffusion

$$au_{
m casc} \sim N \, au_{
m A} \sim rac{ au_{
m nl}^2}{ au_{
m A}} = rac{ au_{
m nl}}{\chi}$$

with $N \sim 1/\chi^2 \sim (\tau_{\rm nl}/\tau_{\rm A})^2$ [# AW interactions]

So When $\chi = \tau_A / \tau_{nl} \sim 1$ is achieved, the linear, non-linear, and cascade timescales match each other:

 $\tau_{\rm nl} \sim \tau_{\rm A} \quad \Rightarrow \quad \tau_{\rm casc} \sim \tau_{\rm nl}$

This is known as "critical balance" (CB)

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

So, the working hypothesis of a critically balanced Alfvénic cascade is:

you can see the ``*critical-balance condition" as the result of causality*:

CR diffusion

 $\tau_{\rm nl} \sim \tau_{\rm A} \quad \Rightarrow \quad \tau_{\rm casc} \sim \tau_{\rm nl}$

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

So, the working hypothesis of a critically balanced Alfvénic cascade is:

 $\tau_{\rm nl} \sim \tau_{\rm A} \quad \Rightarrow \quad \tau_{\rm casc} \sim \tau_{\rm nl}$

you can see the *``critical-balance condition" as the result of causality*:

the information about Alfvénic fluctuations decorrelating in the perpendicular plane over an eddy turn-over time τ_{nl} can only propagate along the field for a length $\ell_{||}$ at maximum speed v_A.

"So... CB is essentially AWs trying to keep up with the turbulent eddies..."

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

So, the working hypothesis of a critically balanced Alfvénic cascade is:

 $\tau_{\rm nl} \sim \tau_{\rm A} \quad \Rightarrow \quad \tau_{\rm casc} \sim \tau_{\rm nl}$

you can see the *``critical-balance condition" as the result of causality*:

the information about Alfvénic fluctuations decorrelating in the perpendicular plane over an eddy turn-over time τ_{nl} can only propagate along the field for a length $\ell_{||}$ at maximum speed v_A.

"So... CB is essentially AWs trying to keep up with the turbulent eddies..."

Therefore, once $\tau_{nl} \sim \tau_A$ is reached, the balance is likely mantained. (In principle, this could be done by continuing the cascade with τ_{nl} = const., or by generating smaller $\ell_{||}$ such that $\tau_A \sim \ell_{||}/v_A \sim \tau_{n|}$ keeps holding... it is the latter)

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

So, the working hypothesis of a critically balanced Alfvénic cascade is:

 $\tau_{\rm nl} \sim \tau_{\rm A} \quad \Rightarrow \quad \tau_{\rm casc} \sim \tau_{\rm nl}$

refluctuations' scaling and corresponding spectrum are obtained by **assuming a** constant energy flux *ɛ* through scales ("intertial range")

t.
$$\Rightarrow \qquad \delta z_{k_{\perp}} \propto k_{\perp}^{-1/3} \qquad \Rightarrow \qquad \mathcal{E}_{\delta z}(k_{\perp}) \propto k_{\perp}^{-5/3}$$

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation [Goldreich & Sridhar, ApJ (1995); see also: Oughton & Matthaeus, (2020); Schekochihin, arXiv:2010.00699]

So, the working hypothesis of a critically balanced Alfvénic cascade is:

 $\tau_{\rm nl} \sim \tau_{\rm A} \quad \Rightarrow \quad \tau_{\rm casc} \sim \tau_{\rm nl}$

refluctuations' scaling and corresponding spectrum are obtained by **assuming a** constant energy flux *ɛ* through scales ("intertial range")

st.
$$\Rightarrow \qquad \delta z_{k_{\perp}} \propto k_{\perp}^{-1/3} \qquad \Rightarrow \qquad \mathcal{E}_{\delta z}(k_{\perp}) \propto k_{\perp}^{-5/3}$$

reason now, you can compute the *fluctuations' wavenumber anisotropy from CB*:

$$|v_{\rm A} \rangle \Rightarrow k_{\parallel} \propto k_{\perp}^{2/3} \left(\Rightarrow \mathcal{E}_{\delta z}(k_{\parallel}) \propto k_{\parallel}^{-2} \right)$$

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \Omega\left(\boldsymbol{v}\times\boldsymbol{b}\right)$$

$$\begin{array}{ll} v_{\perp,1}(t) = v_{\perp}\cos(\Omega t + \phi) & \mu \doteq \frac{v_{\parallel}}{|v|} = \cos(\theta^{vb}) & \text{``pitch angle} \\ \Rightarrow & v_{\perp,2}(t) = -v_{\perp}\sin(\Omega t + \phi) \\ & v_{\parallel}(t) = v_{\parallel}(0) = |v|\mu = \text{const.} & r_{\mathrm{L}} \doteq \frac{v_{\perp}}{\Omega} = \frac{v}{\Omega}\sqrt{1 - \mu^2} & \text{gyro-radiu} \end{array}$$

CR diffusion

"gyro-motion" (helical trajectory of a charged particlein a magnetic field)

 $\Omega \doteq rac{q|oldsymbol{B}|}{m\gamma c}$ gyro-frequency $egin{array}{c} egin{array}{c} egin{array}$ magnetic-field direction

US

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \Omega\left(\boldsymbol{v}\times\boldsymbol{b}\right)$$

$$\begin{array}{ll} v_{\perp,1}(t) = v_{\perp}\cos(\Omega t + \phi) & \mu \doteq \frac{v_{\parallel}}{|v|} = \cos(\theta^{vb}) & \text{``pitch angle} \\ \Rightarrow & v_{\perp,2}(t) = -v_{\perp}\sin(\Omega t + \phi) \\ & v_{\parallel}(t) = v_{\parallel}(0) = |v|\mu = \text{const.} & r_{\mathrm{L}} \doteq \frac{v_{\perp}}{\Omega} = \frac{v}{\Omega}\sqrt{1-\mu^2} & \text{gyro-radiu} \end{array}$$

© consider a *magnetic-field perturbation* of the type:

☞ estimate time derivative of pitch angle:

CR diffusion

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

"gyro-motion" (helical trajectory of a charged particlein a magnetic field)

 $\Omega \doteq rac{q|oldsymbol{B}|}{m\gamma c}$ gyro-frequency $egin{array}{c} egin{array}{c} egin{array}$ magnetic-field direction

 $\delta \boldsymbol{B}_{\perp} \sim \delta B_{\perp,1} \boldsymbol{e}_{\perp,1} \sin(k_{\parallel} x_{\parallel})$

 $\frac{\mathrm{d}\mu}{\mathrm{d}t} \sim \Omega \frac{\delta B_{\perp}}{B_0} \sqrt{1-\mu^2} \sin(\Omega t + \phi) \sin(k_{\parallel} v_{\parallel} t)$

US

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

rean-square variation of pitch angle:

$$\left\langle \frac{\Delta\mu\Delta\mu}{\Delta t} \right\rangle_{\phi} \propto (1-\mu^2) \left(\frac{\delta B_{\perp}}{B_0} \right)^2 \, \delta(k_{\parallel}v_{\parallel} - b_{\perp})$$

mean-square variation of pi

 \Rightarrow a CR with Larmor radius $r_{\rm L}$ would only scatter on **resonant modes**:

 $k_{\parallel}^{
m res}$

CR diffusion

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

itch angle:
$$\left\langle \frac{\Delta\mu\Delta\mu}{\Delta t} \right\rangle_{\phi} \propto (1-\mu^2) \left(\frac{\delta B_{\perp}}{B_0} \right)^2 \left(\delta(k_{\parallel}v_{\parallel} - w_{\parallel}) \right)^2 \left(\delta(k_{\parallel}v_{\parallel}) \right)^2 \left(\delta(k_{\parallel$$

$$= \frac{\Omega}{v_{\parallel}} \quad \Rightarrow \quad k_{\parallel}^{\rm res} r_{\rm L} \sim \frac{\sqrt{1-\mu^2}}{\mu}$$

 \Rightarrow a CR with Larmor radius $r_{\rm L}$ would only scatter on **resonant modes**:

 $k_{\parallel}^{
m res}$

CR diffusion

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

itch angle:
$$\left\langle \frac{\Delta\mu\Delta\mu}{\Delta t} \right\rangle_{\phi} \propto (1-\mu^2) \left(\frac{\delta B_{\perp}}{B_0} \right)^2 \left(\delta(k_{\parallel}v_{\parallel} - b_{\perp}) \right)^2 \left(\delta(k_{\perp}v_{\parallel} - b_{\perp})$$

$$= \frac{\Omega}{v_{\parallel}} \quad \Rightarrow \quad k_{\parallel}^{\rm res} r_{\rm L} \sim \frac{\sqrt{1-\mu^2}}{\mu}$$

 \land <u>first problem</u>: as $\mu \rightarrow 0$, the resonant wavenumber $k^{\text{res}} \rightarrow \infty$. In a turbulent cascade, the power in the fluctuations vanishes ($\delta B \rightarrow 0$ for $k \rightarrow \infty$), so scattering efficiency vanishes for very low pitch angles (and no crossing through $\mu = 0$).

mean-square variation of pi

 \Rightarrow a CR with Larmor radius $r_{\rm L}$ would only scatter on **resonant modes**:

 $k_{\parallel}^{
m res}$

Consider spectrum of turbulent fluctuations $\mathcal{E}(k_{||}) \sim k_{||}^{-\alpha}$

 $rac{rac}$ estimate scattering rate and spatial diffusion coefficient ($v \sim c$):

$$\nu_{\rm scatt} \sim \left(\frac{k_{\parallel}^{\rm res} \mathcal{E}(k_{\parallel}^{\rm res})}{B_0^2}\right) \Omega \sim \tau_{\rm scatt}^{-1} \quad \Rightarrow \quad D \approx \frac{1}{3} v \lambda_{\rm mfp} \sim v^2 \tau_{\rm scatt} \propto \frac{c r_{\rm L}}{r_{\rm L}^{-1} \mathcal{E}(r_{\rm L}^{-1})} \sim$$

CR diffusion

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

itch angle:
$$\left\langle \frac{\Delta\mu\Delta\mu}{\Delta t} \right\rangle_{\phi} \propto (1-\mu^2) \left(\frac{\delta B_{\perp}}{B_0}\right)^2 \delta(k_{\parallel}v_{\parallel} - t_{\perp})$$

$$= \frac{\Omega}{v_{\parallel}} \quad \Rightarrow \quad k_{\parallel}^{\rm res} r_{\rm L} \sim \frac{\sqrt{1-\mu^2}}{\mu}$$

^e mean-square variation of p B

 \Rightarrow a CR with Larmor radius $r_{\rm L}$ would only scatter on **resonant modes**:

 $k_{\parallel}^{
m res}$

Consider spectrum of turbulent fluctuations $\mathcal{E}(k_{||}) \sim k_{||}^{-\alpha}$ D(E) $rac{rac}$ estimate scattering rate and spatial diffusion coefficient ($v \sim c$): $\tau_{\rm scatt}^{-1} \quad \Rightarrow \quad D \approx \frac{1}{3} v \lambda_{\rm mfp} \sim v^2 \tau_{\rm scatt} \propto \frac{c r_{\rm L}}{r_{\rm L}^{-1} \mathcal{E}(r_{\rm L}^{-1})} \sim E^{2-\alpha}$

$$\nu_{\rm scatt} \sim \left(\frac{k_{\parallel}^{\rm res} \mathcal{E}(k_{\parallel}^{\rm res})}{B_0^2}\right) \Omega \sim \gamma$$

CR diffusion

Crude estimate of a diffusion coefficient (quasi-linear approach on single mode) [see, e.g., Blasi, AAR (2013)]

itch angle:
$$\left\langle \frac{\Delta\mu\Delta\mu}{\Delta t} \right\rangle_{\phi} \propto (1-\mu^2) \left(\frac{\delta B_{\perp}}{B_0} \right)^2 \delta(k_{\parallel}v_{\parallel} - t_{\perp})$$

$$= rac{\Omega}{v_{\parallel}} \quad \Rightarrow \quad k_{\parallel}^{
m res} r_{
m L} \sim rac{\sqrt{1-\mu^2}}{\mu}$$

A more rigorous quasi-linear calculation for Alfvénic fluctuations would give: [e.g., Kulsrud & Pearce, ApJ (1969); Völk, ASpSci (1973)]

$$D_{\mu\mu} = \Omega^2 (1-\mu^2) \int \mathrm{d}\boldsymbol{k} \sum_{n=-\infty}^{\infty} \delta(\underbrace{k_{\parallel}v_{\parallel} - \omega_{\mathrm{A}} + n\Omega}_{\approx k_{\parallel}v_{\parallel} + n\Omega}) \frac{n^2 J_n^2(z)}{z^2} \mathcal{E}^{\mathrm{A}}(\boldsymbol{k})$$

$$z \doteq rac{k_\perp v_\perp}{\Omega} = k_\perp r_\mathrm{L}$$

A more rigorous quasi-linear calculation for Alfvénic fluctuations would give: [e.g., Kulsrud & Pearce, ApJ (1969); Völk, ASpSci (1973)]

A more rigorous quasi-linear calculation for Alfvénic fluctuations would give: [e.g., Kulsrud & Pearce, ApJ (1969); Völk, ASpSci (1973)]

$$D_{\mu\mu} = \Omega^{2}(1-\mu^{2}) \int d\mathbf{k} \sum_{n=-\infty}^{\infty} \delta(\underbrace{k_{\parallel}v_{\parallel} - \omega_{A} + n\Omega}_{\approx k_{\parallel}v_{\parallel} + n\Omega}) \frac{n^{2}J_{n}^{2}(z)}{z^{2}} \mathcal{E}^{A}(\mathbf{k})$$

$$\stackrel{\bullet}{\underset{\text{[Chandran, PRL (2000)]}}{\bullet}$$

e.g., for a Goldreich-Sridhar cascade the fluctuations' power spectrum is confined by

$$k_{\perp} \gtrsim k_{\parallel}^{3/2} \ell_0^{-1/2} \quad \Rightarrow \quad z = k_{\perp} r_{\rm L} \gtrsim \left(n \, \frac{\sqrt{1-\mu^2}}{\mu} \right)^{3/2} \left(\frac{r_{\rm L}}{\ell_0} \right)^{-1/2} \gg 1$$

so a CR crosses many uncorrelated fluctuations of the required k_{\parallel} during its gyro-orbit, and such contributions tend to cancel out (cf. $J^2(z)/z^2$ behaviour at z >> 1)

CR diffusion

$$z \doteq rac{k_\perp v_\perp}{\Omega} = k_\perp r_\mathrm{L}$$

In anisotropic turbulence, $k_{\perp} >> k_{\parallel}$, like for the Alfvénic cascade, the gyro-resonant scattering is strongly suppressed

[this is true even from a very precise calculation of D, then included in global CR-transport simulations: see Fornieri et al., MNRAS (2021)]

CR diffusion

So, CR scattering by Alfvénic turbulence is very inefficient at CR-energies less than ~ 10-100 TeV

what now?!

So, CR scattering by Alfvénic turbulence is very inefficient at CR-energies less than ~ 10-100 TeV [this is true even from a very precise calculation of D, then included in global CR-transport simulations: see Fornieri et al., MNRAS (2021)]

what now?!

well, MHD does not have just the Alfvén mode in a compressible world!

$$\begin{pmatrix} \omega^{2} - k^{2} v_{A}^{2} - k_{\perp}^{2} c_{s}^{2} & 0 & -k_{\perp} k_{\parallel} c_{s}^{2} \\ 0 & \omega^{2} - k_{\parallel}^{2} v_{A}^{2} & 0 \\ -k_{\perp} k_{\parallel} c_{s}^{2} & 0 & \omega^{2} - k_{\parallel}^{2} c_{s}^{2} \end{pmatrix} \begin{pmatrix} \delta u_{x} \\ \delta u_{y} \\ \delta u_{z} \end{pmatrix} = 0$$

$$\begin{array}{ccc}
0 & -k_{\perp}k_{\parallel}c_{s}^{2} \\
-k_{\parallel}^{2}v_{A}^{2} & 0 \\
0 & \omega^{2}-k_{\parallel}^{2}c_{s}^{2}
\end{array}
\left(\begin{array}{c}
\delta u_{x} \\
\delta u_{y} \\
\delta u_{z}
\end{array}\right) = 0
\end{array}$$

Alfvén mode: transverse oscillation

 $\boldsymbol{k}\cdot\delta\boldsymbol{u}=0$ and $\delta\boldsymbol{u}\cdot\boldsymbol{B}_0=0$

 $oldsymbol{B}=oldsymbol{B}_0+\deltaoldsymbol{B}_\parallel$

k

Alfvén mode: transverse oscillation

 $\boldsymbol{k} \cdot \delta \boldsymbol{u} = 0$ and $\delta \boldsymbol{u} \cdot \boldsymbol{B}_0 = 0$

Why magnetosonic modes are important for CR scattering?

Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

CR diffusion

Why magnetosonic modes are important for CR scattering?

Seal Isotropy of the fast-magnetosonic cascade (from simulations)

CR diffusion

- Why magnetosonic modes are important for CR scattering?

PRL (2002)] [Cho & Lazaria

Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

CR diffusion

Why magnetosonic modes are important for CR scattering?

Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

CR diffusion

Why magnetosonic modes are important for CR scattering?

Isotropy of the fast-magnetosonic cascade (from simulations)

$$D_{\mu\mu} = \Omega^2 (1-\mu^2) \int \mathrm{d}\boldsymbol{k} \sum_{n=-\infty}^{\infty} \delta(k_{\parallel} v_{\parallel} - \omega + n\Omega) \left\{ \frac{n^2 J_n^2(z)}{z^2} \Big[\mathcal{E}^{\mathrm{A}}(\boldsymbol{k}) + \mathcal{E}^{\mathrm{S}}(\boldsymbol{k}) \Big] + \left(\frac{k_{\parallel}}{k} J_n'^2(z) \, \mathcal{E}^{\mathrm{F}}(\boldsymbol{k}) \right\}$$

- Why magnetosonic modes are important for CR scattering?
- so, the fast-magnetosonic cascade gets us past the problem of the anisotropy...

Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

$$D_{\mu\mu} = \Omega^2 (1-\mu^2) \int \mathrm{d}\boldsymbol{k} \sum_{n=-\infty}^{\infty} \delta(k_{\parallel}v_{\parallel} - \omega + n\Omega) \left\{ rac{n^2 J_n^2(z)}{z^2} \Big[\mathcal{E}^{\mathrm{A}}(\boldsymbol{k}) + \mathcal{E}^{\mathrm{S}}(\boldsymbol{k}) \Big] + \left(rac{k_{\parallel}}{k} J_n'^2(z) \, \mathcal{E}^{\mathrm{F}}(\boldsymbol{k}) \Big\}$$

CR diffusion

- Why magnetosonic modes are important for CR scattering?
- so, the fast-magnetosonic cascade gets us past the problem of the anisotropy...

...but what about the $\mu \rightarrow 0$ issue due to the resonance condition?
Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

Resonance broadening due to local **B** variations (from energy + magnetic-moment conservation)

CR diffusion

- Why magnetosonic modes are important for CR scattering?

Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

Resonance broadening due to local **B** variations (from energy + magnetic-moment conservation)

$$v_{\perp}^2 + v_{\parallel}^2 = v^2 = \text{const.}$$
 + $\frac{v_{\perp}^2}{|\mathbf{B}|} = \text{const.}$

$$\Rightarrow \quad \langle \Delta v_{\parallel}^2 \rangle = -(1-\mu^2)v^2 \frac{\langle \Delta |\boldsymbol{B}| \rangle}{B_0} \approx -(1-\mu^2)v^2 \frac{\delta B_{\parallel}^{\rm rms}}{B_0}$$

CR diffusion

- Why magnetosonic modes are important for CR scattering?

Solutions Isotropy of the fast-magnetosonic cascade (from simulations)

Resonance broadening due to local **B** variations (from energy + magnetic-moment conservation)

$$v_{\perp}^2 + v_{\parallel}^2 = v^2 = \text{const.}$$
 + $\frac{v_{\perp}^2}{|\mathbf{B}|} = \text{const.}$

$$\Rightarrow \quad \langle \Delta v_{\parallel}^2 \rangle = -(1-\mu^2)v^2 \frac{\langle \Delta |\boldsymbol{B}| \rangle}{B_0} \approx -(1-\mu^2)v^2 \frac{\delta B_{\parallel}^{\rm rms}}{B_0}$$

$$\delta(k_{\parallel}v_{\parallel} - \omega + n\Omega) \longrightarrow \left(R(k_{\parallel}v_{\parallel} - \omega + n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v\sqrt{1 - \mu^2} M_{\mathrm{A}}^{1/2}} \exp\left(-\frac{(k_{\parallel}v_{\parallel} - \omega + n\Omega)^2}{k_{\parallel}^2 v^2 (1 - \mu^2) M_{\mathrm{A}}}\right) \right)$$

CR diffusion

- Why magnetosonic modes are important for CR scattering?

$$+ \ {\cal O}(\delta B^2)$$

[Yan & Lazarian, ApJ (2008)]

with Alfvénic Mach number $M_{\rm A} \sim (\delta B/B_0)_{\rm inj}$

Numerical Framework & Recent Results

$$D_{\mu\mu} = \Omega^2 (1 - \mu^2) \int d^3 \mathbf{k} \sum_{n = -\infty}^{+\infty} R_n (k_{\parallel} v_{\parallel} - \omega + n\Omega) \left[\frac{n^2 J_n^2(z)}{z^2} I^{\mathrm{A}}(\mathbf{k}) + \frac{k_{\parallel}^2}{k^2} J_n'^2(z) I^{\mathrm{M}}(\mathbf{k}) \right]$$

$$R_n(k_{\parallel}v_{\parallel} - \omega + n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v_{\perp}M_{\rm A}^{1/2}} \cdot \exp\left(-\frac{(k_{\parallel}v\mu - \omega + n\Omega)^2}{k_{\parallel}^2v^2(1 - \mu^2)M_{\rm A}}\right)$$

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY MNRAS 502, 5821–5838 (2021) Advance Access publication 2021 February 9

The theory of cosmic ray scattering on pre-existing MHD modes meets data

Ottavio Fornieri[®],^{1,2,3}* Daniele Gaggero[®],³ Silvio Sergio Cerri[®],⁴ Pedro De La Torre Luque^{®5,6} and Stefano Gabici⁷

[Fornieri et al., MNRAS (2021)]

doi:10.1093/mnras/stab355

$$D_{\mu\mu} = \Omega^2 (1 - \mu^2) \int d^3 \mathbf{k} \sum_{n = -\infty}^{+\infty} R_n (k_{\parallel} v_{\parallel} - \omega + n\Omega) \left[\frac{n^2 J_n^2(z)}{z^2} I^{\mathrm{A}}(\mathbf{k}) + \frac{k_{\parallel}^2}{k^2} J_n'^2(z) I^{\mathrm{M}}(\mathbf{k}) \right]$$

$$R_n(k_{\parallel}v_{\parallel} - \omega + n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v_{\perp}M_{\rm A}^{1/2}} \cdot \exp\left(-\frac{(k_{\parallel}v\mu - \omega + n\Omega)^2}{k_{\parallel}^2v^2(1 - \mu^2)M_{\rm A}}\right)$$

$$D_{\mu\mu} = \Omega^{2}(1-\mu^{2}) \int d^{3}k \sum_{n=-\infty}^{+\infty} R_{n}(k_{\parallel}v_{\parallel}-\omega+n\Omega) \left[\frac{n^{2}J_{n}^{2}(z)}{z^{2}} I^{A}(k) + \frac{k_{\parallel}^{2}}{k^{2}} J_{n}^{\prime 2}(z) I^{M}(k) \right]$$

$$R_{n}(k_{\parallel}v_{\parallel}-\omega+n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v_{\perp}M_{A}^{1/2}} \cdot \exp\left(-\frac{(k_{\parallel}v_{\mu}-\omega+n\Omega)^{2}}{k_{\parallel}^{2}v^{2}(1-\mu^{2})M_{A}}\right)$$

$$B_{i}(k) \cdot \delta B_{j}^{*}(k') \rangle / B_{0}^{2} = \delta^{3}(k-k') \mathcal{M}_{ij}(k)$$

$$N^{(S),sub}I_{ij}k_{\perp}^{-10/3} \cdot \exp\left(-\frac{L^{1/3}|k_{\parallel}|}{M_{A}^{4/3}k_{\perp}^{2/3}}\right) \qquad (M_{A} \leq 1)$$

$$\sum_{i=j} \mathcal{M}_{ij} = I^{A,S,F}$$

$$(\delta B(\mathbf{x})^{2}) \equiv B_{0}^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \sum_{i,j} \int d^{3}k \mathcal{M}_{ij}(k) \stackrel{!}{=} \delta B_{ms}^{2} = \delta^{2} \delta^{2$$

$$-\mu^{2} \int d^{3}k \sum_{n=-\infty}^{+\infty} R_{n}(k_{\parallel}v_{\parallel} - \omega + n\Omega) \left[\frac{n^{2}J_{n}^{2}(z)}{z^{2}} I^{A}(k) + \frac{k_{\parallel}^{2}}{k^{2}} J_{n}^{\prime 2}(z) I^{M}(k) \right]$$

$$R_{n}(k_{\parallel}v_{\parallel} - \omega + n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v_{\perp}M_{A}^{1/2}} \cdot \exp\left(-\frac{(k_{\parallel}v\mu - \omega + n\Omega)^{2}}{k_{\parallel}^{2}v^{2}(1 - \mu^{2})M_{A}}\right)$$

$$E'(k)/B_{0}^{2} = \delta^{3}(k - k') \mathcal{M}_{ij}(k)$$

$$\Phi \cdot \exp\left(-\frac{L^{1/3}|k_{\parallel}|}{M_{A}^{4/3}k_{\perp}^{2/3}}\right) \qquad (M_{A} \le 1)$$

$$H^{0/3} \cdot \exp\left(-\frac{L^{1/3}|k_{\parallel}|}{M_{A}k_{\perp}^{2/3}}\right) \qquad (M_{A} > 1)$$

 $\langle \delta \rangle$

$$\mathcal{M}_{ij}^{A(S),sub} = C_a^{A(S),sub} I_{ij} k_{\perp}^{-10/3} \cdot \exp\left(-\frac{L^{1/3} |k_{\parallel}|}{M_A^{4/3} k_{\perp}^{2/3}}\right)$$
$$\mathcal{M}_{ij}^{A(S),super} = C_a^{A(S),super} I_{ij} k_{\perp}^{-10/3} \cdot \exp\left(-\frac{L^{1/3} |k_{\parallel}|}{M_A k_{\perp}^{2/3}}\right)$$

 $\mathcal{M}_{ij}^{\mathrm{F}} = C_a^{\mathrm{F}} J_{ij} k^{-}$

$$\sum_{i=j} \mathcal{M}_{ij} = I^{A,S,F}$$

$$D_{\mu\mu} = \Omega^2 (1 - \mu^2) \int d^3 \mathbf{k} \sum_{n=-\infty}^{+\infty} R_n (k_{\parallel} v_{\parallel} - \omega + n\Omega) \left[\frac{n^2 J_n^2(z)}{z^2} I^A(\mathbf{k}) + \frac{k_{\parallel}^2}{k^2} J_n'^2(z) I^M(\mathbf{k}) \right]$$

$$R_n(k_{\parallel}v_{\parallel} - \omega + n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v_{\perp}M_{\rm A}^{1/2}} \cdot \exp\left(-\frac{(k_{\parallel}v\mu - \omega + n\Omega)^2}{k_{\parallel}^2v^2(1 - \mu^2)M_{\rm A}}\right)$$

The integral in k has to be performed up to a "*truncation scale*" (dissipation scale)

depends on several environmental/plasma/wave parameters

$$\beta = \frac{P_g}{P_B}$$

$$x_c = \left(\frac{6\,\rho\,\delta V^2\,L}{\eta_0\,v_A}\right)^2$$

 $k_{\parallel} \equiv |\mathbf{k}| \cos \alpha_{\rm wave}$

$$D_{\mu\mu} = \Omega^2 (1 - \mu^2) \int d^3 \mathbf{k} \sum_{n = -\infty}^{+\infty} R_n (k_{\parallel} v_{\parallel} - \omega + n\Omega) \left[\frac{n^2 J_n^2(z)}{z^2} I^A(\mathbf{k}) + \frac{k_{\parallel}^2}{k^2} J_n'^2(z) I^M(\mathbf{k}) \right]$$

$$R_n(k_{\parallel}v_{\parallel} - \omega + n\Omega) = \frac{\sqrt{\pi}}{|k_{\parallel}|v_{\perp}M_{\rm A}^{1/2}} \cdot \exp\left(-\frac{(k_{\parallel}v\mu - \omega + n\Omega)^2}{k_{\parallel}^2v^2(1 - \mu^2)M_{\rm A}}\right)$$

relation Now, having computed all modes' contributions to the ptich-angle scattering, compute the spatial diffusion coefficient

$$D(R) = \frac{1}{4} \int_0^{\mu^*} d\mu \frac{v^2 (1 - \mu^2)^2}{D_{\mu\mu}^{M,T}(R) + D_{\mu\mu}^{M,G}(R) +$$

where μ^* is the largest pitch angle for which a cosmic ray with rigidity R can be considered confined by turbulence (i.e., in the *diffusion regime*): [Fornieri et al., MNRAS (2021)]

 $-D^{\mathrm{A,G}}_{\mu\mu}(R)$

 $R = L^{-1} |\boldsymbol{v}| / \Omega$

particle's (dimensionless) rigidity

$$\frac{\tau_{\mu\mu}}{\tau_{\rm stream}} \sim \frac{v}{L'_{\rm H,D}} \frac{(1-\mu^2)}{D_{\mu\mu}} \ll 1$$

some just Alfvén modes are indeed inefficient for CR confinement in the Galactic Halo:

some just Alfvén modes are indeed inefficient for CR confinement in the Galactic Halo:

some just Alfvén modes are indeed inefficient for CR confinement in the Galactic Halo:

[Fornieri et al., MNRAS (2021)]

These CR energies corresponds to small spatial scales, where the anisotropy of the Alfvénic cascade is highly developed

reparameter scan to see if we can match phenomenological best-fit models based on CR data:

E [GeV]

10^{32} Galactic halo $L = 100 \text{ pc}; \beta = 0.1$ 10^{32} $[D_{102}^{(E)} = 0.01]$ **Galactic Halo:** 10^{27} --- Reference $M_{A} = 0.5$ $---- M_A = 0.8$ $M_A = 0.1$ $M_{A} = 0.3$ $M_{A} = 1.0$ $---- M_A = 2.0$ $10^{26}_{10^{0}}$ 10^{2} 10^{1} 10^{4} 10^{3} E [GeV] $- M_A = 0.8; x_c = 10^6$ --- Best-fit coefficient Extended disk $M_A = 0.3; x_c = 10^5$ $M_A = 1.; x_c = 10^6$ 10^{3} $M_A = 0.3; x_c = 10^6$ $-M_A = 1.3; x_c = 10^6$ $M_A = 0.3; x_c = 10^7$ $M_A = 1.6; x_c = 10^6$ $M_A = 0.5; x_c = 10^6$ $M_A = 2.0; x_c = 10^6$ $D(E) [cm^2 \cdot s^{-1}]$ **Galactic Disk:** 10^{28} *L* = 100 pc; β = 0.1 $10^{27}_{10^{0}}$ 10^{4} 10^{2} 10^{3} 10^{1}

reparameter scan to see if we can match phenomenological best-fit models based on CR data:

reparameter scan to see if we can match phenomenological best-fit models based on CR data:

 $E\left[\text{GeV}\right]$

10^{32} Galactic halo $L = 100 \text{ pc}; \beta = 0.1$ 10^{32} $[D_{10}^{10}] = \frac{10^{30}}{2} \cdot c_{10}^{29}$ **Galactic Halo:** 10^{27} $M_{A} = 0.5$ --- Reference $---- M_A = 0.8$ $M_A = 0.1$ $M_{A} = 0.3$ $M_{A} = 1.0$ $---- M_A = 2.0$ $10^{26}_{10^{0}}$ 10^{2} 10^{1} 10^{3} 10^{4} E [GeV] - $M_A = 0.8; x_c = 10^6$ Best-fit coefficient Extended disk $M_A = 0.3; x_c = 10^5$ $M_A = 1.; x_c = 10^6$ 10^{3} $M_A = 0.3; x_c = 10^6$ $M_A = 1.3; x_c = 10^6$ $M_A = 0.3; x_c = 10^7$ $M_A = 1.6; x_c = 10^6$ $M_A = 2.0; x_c = 10^6$ $M_A = 0.5; x_c = 10^6$ $D(E) [cm^2 \cdot s^{-1}]$ **Galactic Disk:** 10^{28} *L* = 100 pc; β = 0.1 $10^{27}_{10^{0}}$ 10^{4} 10^{2} 10^{1} 10^{3}

implement these coefficient in the **DRAGON code**: (global CR-transport simulations within a 2-zone model of the Galaxy: disk + halo)

implement these coefficient in the **DRAGON code**:

(global CR-transport simulations within a 2-zone model of the Galaxy: disk + halo)

DRAGON2 (**D**iffusion **R**eacceleration and **A**dvection of **G**alactic cosmic rays: an **O**pen **N**ew code)

 \checkmark primary CRs (e.g., SNRs) \rightarrow distribution of sources (including exotic sources)

[Fornieri et al., MNRAS (2021)]

for implementation details, see: [Evoli et al., JCAP (2017)] [Evoli et al., JCAP (2018)]

https://github.com/cosmicrays

some important physical ingredients:

- \checkmark secondary CRs (spallation) \rightarrow up-to-date nuclear cross sections
- \checkmark CR transport \rightarrow diffusion, re-acceletation, advection & losses
- ✓ large-scale structure \rightarrow Galactic magnetic field & gas distribution

implement these coefficient in the **DRAGON code**:

(global CR-transport simulations within a 2-zone model of the Galaxy: disk + halo)

testing some environmental/plasma parameters against B/C data

implement these coefficient in the **DRAGON code**: (global CR-transport simulations within a 2-zone model of the Galaxy: disk + halo)

testing some environmental/plasma parameters against B/C data [each line in these plots is a global simulation with a different D(E)]

varying β_{halo} and M_A (same M_A in disk and halo)

[Fornieri et al., MNRAS (2021)]

varying $M_{A,halo}$ and $M_{A,disk}$

varying disk size

implement these coefficient in the **DRAGON code**: (global CR-transport simulations within a 2-zone model of the Galaxy: disk + halo)

[Fornieri et al., MNRAS (2021)]

some "plausible" parameters vs single CR-species data

implement these coefficient in the **DRAGON code**: (global CR-transport simulations within a 2-zone model of the Galaxy: disk + halo)

[Fornieri et al., MNRAS (2021)]

some "plausible" parameters vs single CR-species data

In order to interpret increasingly accurate measurements, one needs to understand and model in great detail the micro-physics of cosmic-ray transport in our Galaxy

- Include the effect of self-generated turbulence
- Consider fully anisotropic CR transport in the large-scale Galactic magnetic field

 $D_{ij} \equiv D_{\perp} \delta$

Thank you for your attention!

Beyond quasi-linear (or, weakly non-linear) theory of CR scattering on MHD modes

$$\delta_{ij} + (D_{\parallel} - D_{\perp})b_ib_j$$

$$b_i \equiv \frac{B_i}{|\mathbf{B}|}$$

