

Expectation-Propagation methods for scalable inference in imaging inverse problems

Dr Yoann Altmann

RAEng Research Fellow School of Engineering and Physical Sciences Heriot-Watt University, Edinburgh, U.K.

Joint work with: Dan Yao, Zeng Li, Abdullah Abdulaziz, Stephen McLaughlin

Nice, June, 25th 2022

Why?

Outline

- Approximate methods and EP
- Linear spectral unmixing
- Image restoration
- Conclusion

Bayesian inference: key ingredients

4

Estimation strategies

- Point estimation
 - MAP: convex/non-convex optimization
 - Limited uncertainty quantification
- "Exact" methods: Importance sampling SMC MCMC
- Approximate methods
 - Proximal MCMC
 - Variational Bayes (VB) methods
 - Approximate message passing (AMP/EP)

Bayesian modeling

• Exact model

$$f(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\theta}) = \frac{f(\boldsymbol{y}|\boldsymbol{x})f(\boldsymbol{x}|\boldsymbol{\theta})}{f(\boldsymbol{y}|\boldsymbol{\theta})}$$

- Approximating distribution
 - VB/EP: Divergence-based

On the choice of divergence(s)

- Different families of similarity measures
- Classical choice: Kullback-Leibler $KL(q(x) || p(x)) = \int q(x) \ln \frac{q(x)}{p(x)} dx$
- More general families
 - $-\alpha$ -divergences

Mean-Field Variational Bayes (MFVB)

 $f(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}) \approx q(\mathbf{x})$ (often using mean field approx.)

 $\min_{q(\mathbf{x})} KL(q(\mathbf{x}) || f(\mathbf{x}|\mathbf{y},\theta))$

$$KL(q(x) || p(x)) = \int q(x) \ln \frac{q(x)}{p(x)} dx$$

8

Expectation-Propagation

 $f(\mathbf{y}, \mathbf{x}|\boldsymbol{\theta}) = f(\mathbf{y}|\mathbf{x})f(\mathbf{x}|\boldsymbol{\theta})$ $q(\mathbf{x}) \propto q_1(\mathbf{x})q_0(\mathbf{x}) : \text{user-defined}$

• Based on the reverse KL-divergence $\min_{Z, q(x) \in \mathcal{F}} KL(f(y, x | \theta) || Z_{y, \theta} q(x))$ $Z_{y, \theta} \approx f(y | \theta)$

EP: preserves better the marginals than MFVB

EP: Iterative minimization

 $\min_{Z,q(\boldsymbol{x})} KL(f(\boldsymbol{y},\boldsymbol{x}|\boldsymbol{\theta}) || \boldsymbol{Z}_{\boldsymbol{y},\boldsymbol{\theta}}q(\boldsymbol{x}))$

Actual model:

 $f(\mathbf{y}, \mathbf{x}|\theta) = f(\mathbf{y}|\mathbf{x})f(\mathbf{x}|\theta)$

Approximate model:

 $q(\boldsymbol{x}) \propto q_1(\boldsymbol{x}) q_0(\boldsymbol{x})$

Can be applied with more than 2 factors

Repeat:

- $\min_{q_1(\mathbf{x})} KL(f(\mathbf{y}|\mathbf{x})q_0(\mathbf{x})||q_1(\mathbf{x})q_0(\mathbf{x}))$
- $\min_{q_0(\boldsymbol{x})} KL(q_1(\boldsymbol{x})f(\boldsymbol{x}|\boldsymbol{\theta})||q_1(\boldsymbol{x})q_0(\boldsymbol{x}))$

... until convergence

Divergence minimization

- With Gaussian approximations: moment matching Most challenging step: moments of the *tilted distributions*
 - $f(\mathbf{y}|\mathbf{x})q_0(\mathbf{x})$ and $q_1(\mathbf{x})f(\mathbf{x}|\theta)$
- Can be simplified using the structure of q(x)
 - Additional constraints
 - Tradeoff accuracy/complexity

Message passing interpretation

 $\min_{\substack{q_0(x) \\ q_1(x)}} KL(q_1(x)f(x) ||q_1(x)q_0(x))$ $\min_{\substack{q_1(x) \\ q_1(x)}} KL(f(y|x)q_0(x)) ||q_1(x)q_0(x))$

Outline

- Approximate methods and EP
- Linear spectral unmixing
- Image restoration using TV prior
- Conclusion

EP for source separation

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e} \Rightarrow f(\mathbf{y}|\mathbf{A}\mathbf{x}) = \prod_{m=1}^{M} f(y_m | \mathbf{a}_m^T \mathbf{x})$$
$$f(\mathbf{x}) = \prod_{n=1}^{N} f_n(x_n)$$

- A: sources, spectral signatures...
- $\mathbf{x} = [x_1, \dots, x_N]^T$: fractions, amount of each source
- Arbitrary observation noise (Gaussian, Poisson,...)
- Separable prior model (not necessarily log-concave)
- $N \ll M$ (and N small)

Wavelength (nm)

Vavelength (nm)

Mixed pixel (soil + rocks)

Mixed pixel (vegetation + soil)

Pure pixel (water)

• Simple model: 2 updates

 $\min_{q_0(x)} KL(q_1(x)f(x) ||q_1(x)q_0(x))$ $\min_{q_1(x)} KL(f(y|Ax)q_0(x))||q_1(x)q_0(x))$

• More challenging with non-Gaussian (e.g. Poisson) noise...

Hyperspectral unmixing

Sparse unmixing using spike-and-slab prior

Z. Li et al. "Sparse Linear Spectral Unmixing of Hyperspectral images using Expectation-Propagation", IEEE TGRS, 2021.

EP with extended graphs

• Extended models: split into smaller problems

$$-f(\boldsymbol{x}|\boldsymbol{\theta})$$

$$-f(\boldsymbol{u}|\boldsymbol{x}) = \boldsymbol{\delta}(\boldsymbol{u} - \boldsymbol{A}\boldsymbol{x})$$

 $-f(\boldsymbol{y}|\boldsymbol{u})$

•
$$f(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}) = \int f(\mathbf{u}, \mathbf{x}|\mathbf{y}, \boldsymbol{\theta}) d\mathbf{u}$$

- $q(\mathbf{x}) = \int q(\mathbf{u}, \mathbf{x}) d\mathbf{u}$

 $\min_{\substack{q_1(u),q_1(x) \\ q_0(x)}} KL(f(y|u)q_1(u)||q_0(u)q_1(u)) \\ KL(\delta(u - Ax) q_0(u)q_0(x)||q_1(u)q_1(x)q_0(u)q_0(x)) \\ \min_{\substack{q_0(x) \\ q_0(x)}} KL(q_1(x)f(x) ||q_1(x)q_0(x))$

- Choosing $q_0(\mathbf{u}), q_0(\mathbf{x})$ and $q_1(\mathbf{u}, \mathbf{x})$
 - Tradeoff accuracy/complexity
 - Problem-dependent

Links to traditional splitting methods

- Similar schemes as ADMM for MAP estimation
 - Local MAP estimation \rightarrow local MMSE estimation
 - Local uncertainty estimation
 - Allows automatic adjustment of the splitting parameters

Outline

- Approximate methods and EP
- Linear unmixing
- Image restoration
- Conclusion

EP for imaging inverse problems

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{e} \Rightarrow f(\mathbf{y}|\mathbf{H}\mathbf{x}) = \prod_{m=1}^{M} f(y_m|\mathbf{h}_m^T\mathbf{x})$$

Challenges:

- High-dimensional
- Non-convex priors
- Avoiding handling large covariance matrices

- f(x): image prior
- *H*: convolution, subsampling, sensing matrix
- *x*: image to be recovered
- Arbitrary observation noise (Gaussian, Poisson,...)

EP with Total variation priors

$$f_{x}(\boldsymbol{x}|\boldsymbol{\theta}) \propto \prod_{(i,j)\in V} \phi(x_{i} - x_{j}; \boldsymbol{\theta})$$

- Classical anisotropic TV: $\phi(x_i x_j; \theta) = \exp(-\lambda |x_i x_j|), \theta = \lambda$
- MoG prior: $\phi(x_i x_j; \theta)$ is a Gaussian mixture
- Special case: Bernoulli-Gaussian (BG) mixture (spike-and-slab)

EP with Total variation priors (denoising)

EP with Total variation priors (deconvolution)

Hyperparameter estimation

- What if θ is unknown in $f(x, y|\theta)$?
- Option 1:

$$f(\boldsymbol{x}, \boldsymbol{\theta} | \boldsymbol{y}) = \frac{f(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\theta}) f(\boldsymbol{x} | \boldsymbol{\theta}) f(\boldsymbol{\theta})}{f(\boldsymbol{y})}$$

Joint estimation of (x, θ) : MCMC or EP (extended model)

Hyperparameter estimation

- What if θ is unknown in $f(x, y|\theta)$?
- Option 2:

$$f(\mathbf{x}|\mathbf{y},\widehat{\boldsymbol{\theta}}) = \frac{f(\mathbf{y}|\mathbf{x})f(\mathbf{x}|\widehat{\boldsymbol{\theta}})}{f(\mathbf{y})}$$

where $\widehat{\boldsymbol{\theta}} = \operatorname{argmax} f(\boldsymbol{\theta}|\boldsymbol{y})$ (or $f(\boldsymbol{y}|\boldsymbol{\theta})$).

Hyperparameter estimation

- Finding $\hat{\theta} = \operatorname{argmax} f(\theta|y)$ can often be done (in principle) using EM-like methods
 - Requires expectations w.r.t. $f(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta})$ (during the E-step)
- <u>Idea:</u> replace by expectations w.r.t q(x)
 - Like variational-EM: EP-EM

Application to blind deconvolution

- Deconvolution with Gaussian noise and TV prior
 - Comparison with existing alternative approaches
 - VB and proximal MCMC
- Here, the noise variance and TV hyperparameter are known, the blur is unknown.

Deconvolution results (TV prior)

domains

Using structured sparsity in transformed

32

Beyond KL divergences: Power EP

EP

Power EP

 $\min_{q_0(x)} \frac{KL(q_1(x)f(x) ||q_1(x)q_0(x))}{KL(f(y|Ax)q_0(x)||q_1(x)q_0(x))}$

 $\min_{q_0(x)} \frac{D_{\alpha_0}(q_1(x)f(x) || q_1(x)q_0(x))}{\min_{q_1(x)} D_{\alpha_1}(f(y|Ax)q_0(x)) || q_1(x)q_0(x))}$

Conclusion

- Variational inference possible beyond VB
 - EP: Scalable/distributed
 - Fast convergence (no guarantees)
- Good estimation performance
- But can be difficult to implement (need a bit of practice)
 - How to split?
 - Level of approximation
 - More expensive than MFVB
- How to detect/manipulate correlations in high dimensions?

Thanks for your attention!

