A new instability for finite Prandtl number rotating convection
with free-slip boundary conditions
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Rolls in finite Prandtl number rotating convection with free-slip top and bottom boundary conditions
are shown to be unstable with respect to small angle perturbations for any value of the rotation rate.
This instability is driven by the horizontal mean flow whose estimation requires a special singular
perturbation analysis. €997 American Institute of Physids$$1070-663(97)02001-1

I. INTRODUCTION features of this instability and its nonlinear development are
briefly described in Section V.
Rayleigh—Beard convection in a plane layer heated
from below and rotating about a vertical axis, has been the
object of special attention motivated by both astrophysical; STEADY CONVECTIVE ROLLS IN A ROTATING
and geophysical applications, and by the existence of addeRAME
tional instabilities occurring in this system. In the case of
free-slip top and bottom boundary conditions;gpers and The Boussinesq equations in a horizontal fluid layer
Lortz* showed, using a perturbation analysis near threshold}eated from below and rotating around a vertical axiare
that when in an infinite Prandtl number fluid, the Taylor Written in the non-dimensional form

number(which measures the rotation ragxceeds the criti- A J

cal value 2285, two-dimensional rolls are unstable with re-  Au+2z9—VI —7zxu= Prl<U'VU+ EU>, (1)
spect to perturbations of the form of a similar pattern rotated

by an angle close to 58°. This instability which is also V-u=0, 2
present with no-slip boundaridsleads in the case of ex-

tended systems to the formation of chaotically evolving A9+ Rai,u:u,vl’}_i_%ﬁ’ 3

patches of parallel roll¥:’

Convection at moderate Prandtl number with no-slip topyhere the vertical diffusion time is taken as time unit. We
and bottom boundary conditions, was addressed in Refs. 8, Zssume a Prandtl numberP,>0.6766, to prevent
and 9, and the Kppers—Lortz instability was shown to occur gyer-stability'® The other parameters are the Rayleigh num-
at a critical Ta.ylor number lower than in the infinite Prandtl ber Ra and the square roat of the Tay|or numbe(equaj to

number limit. Free-slip boundaries were considered by Swiftwice the Rossby numbemhich, to be specific, is taken
(cited in Ref. 9 who noted that the usual perturbative calcu-positive (anti-clockwise rotation

lation of the grOWth rate leads to a divergence in the limit of Proceeding as in Ref. 1, we introduce the operators

perturbations quasi-parallel to the basic rolls. The presenf =v x(Vx-) and Y=V x-, and express the velocity

paper is mostly concerned with a revisited analysis of thigy=(u,»,w)! in terms of two scalar fieldsp and ¢, in

problem, leading to a uniformly valid expression of the in-the form u=A($2)+ Y (42)= (9,05 + Iy, 3,0y — dx,

stability growth rate. We show in particular that for any finite — A 4)t, whereA = d,,+ dyy- Applying the operatorg- A

Prandtl number and rotation rate, straight parallel rolls areyndz.Y on Egs.(1)—(3), we obtain

unstable when the angle associated with the perturbation is

small enough. , , | (U+RaG)IX=Q(X,X) + VX, @
In Section Il, steady convective rolls in a rotating frame at

are constructed perturbatively near threshold. Section 11l it

devoted to the computation of the instability growth rate for R

finite angle perturbation, an analysis which, at finite Pranditl ) P, 'z-A(u-vu’)

number, breaks down in the small angle limit. In Section IV, X=| ¢, QX,X")=| — P, 1Z-Y(u-vu’)

we present a special analysis in the resulting small angle

“boundary layer,” where the interaction of the basic rolls v u-va

with quasi-parallel perturbations leads to almost space- [0 0 0

independent contributions which become resonant in the zero c=| o 0 0

angle limit. These terms are removed by prescribing a quasi- '

solvability condition to the marginal mode of quasi-constant -4, 0 0

horizontal vglocity. A upiform expression for the ins_tabilit){ A2\, —79,A, —A,

growth rate is then derived and a new “small-angle instabil-

ity” is obtained. The sensitivity of the instability growth rate U=| 79An  Ady U

to the Prandtl and Taylor numbers is analyzed. Qualitative L O 0 A
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P, AA, 0 0 r 0 7
_ (1) 4
V= 0 P,"'A, O]. , k P
r h 2-2:; Zlﬂz—z(AzeZ'kl'X-l-C.C.)
0 o 1 Q(Xy,Xy)=| Q7| =| P Ky
4
For free-slip b?undary conditions}= ¢=3,,0=39,=0 in Q(131) —2Rowk—zsin27-rz|A|2
the planez= * 3. L ko i
A stationary solution of Eq(4) is computed perturba- 7

tively near the convection threshold by expandingThe solvability condition for Eq(9) (obtained by taking the

= 2 e = 2 3 . . . . e ;i
Ra=Ro+eR;+e"Ry+--- and X=eX;+ X+ X3+ inner product of this equation with(k;)), requiresR;=0.
or, more explicitly, when taking into account the boundaryDefining the operatoP= A3+ 729,,— RoAy,, Eq.(9) reduces
conditions satisfied by the individual components, zz. 0T

to
- 2 4 ci
= escommzt € ysinzmzt -, O APe=AQY+70,Q+AQEY, (18
= ey SinTz+ €?(ho+ h,c082rz) + - -, (6)  where the right hand side vanishes identically. We thus get
by Apé>,=0, since elements of the null space Bf already
9= €,0C087Z+ €°V,SiN2mz+ -+ . (7)) included in¢,, are not needed ig,.
Introducing the linear operatdr=U + R,G, we get at the For the two other cg?p)?nents o, one easily Ch?CkS
successive orders of the expansion, that  ¢,=0, ‘gozq’oe torcec. and2 ¥,=0, with
W o= (7m?/8Pk5) A and ©,= (Rok*/27k?) |A|%. This en-
LX;=0, (8)  ables us to compute
LX,= — R, GXy+Q(Xy,Xy), 9)  Q(X1,X2)+Q(Xz,X1)
LXs= = (RiGXo+ ReGXe) +Q(X1, Xa) + Q(Xz. Xa). o
4k oo -
(10 =| 5 Vo(A* e'k1X—3Ae¥k1%)sin wz+c.c.| .
For a solution in the form of two-dimensional rolls with a r o
critical wave numbetk,| =k, given by the real solution of 27k?0@ ,A€¥1 *cos 7z cos 2mz+c.c.
k2\3 K2\ 2 2 The solvability condition of Eq.(10) then reduces to
2| = +3(?) =1+, (1) R,=r,|A|? or equivalently, €2|A|?= (Ry—Rg)/r,, with

ro= (L23) (Rok*— (@*/P,?)), which completes the
the critical Rayleigh number iRy= [ (k*+ 72)3+ 7272]/k?>  computation of the roll amplitude in terms of the distance to
(Ref. 10. To simplify the writing, we denote by threshold.

Z(a,B,v)=(acosrz,Bsinmz, ycosrz)!, (12

. : . Illl. THE KUPPERS—-LORTZ INSTABILITY
vectors corresponding to fundamental modes in the vertica

direction and obeying the boundary_ conditions prescribed on e assume that the steady rolls of wave veg&tocom-
X. An element of the null space &f is then given by puted in Section Il are subject to a perturbatioin the form
v(IZ)=Z(cl,c2,c3)e”“'~, 13) (zf rolls_wnh_ana|nf|n|te5|mal ampI!tude and a Wavg vegtor
k, making withk; an angled that it is enough to consider in
with ¢;=1, c,= — 77/k},C3= Rok?¥/k3, and ki=k?+m?  the range }- /2, m/2]. We assume for the sake of simplic-

=Ry/3, and the leading order solution reads ity that the wave numberkk;| and |k,| are critical. When
. real, the growth rater of this perturbation is given by
Xl:AU(kl)+C.C., (14) —~ —_~ —~ ~
(U+R,G)X=Q(X,X)+Q(X,X)+ aVX. (19)

where the amplitudé\ will be determined by a solvability

= 2 .. i
condition arising at a higher order. For this purpose, it is" Order to computer = eo +€“o,+ -+ perturbatively near

convenient to introduce the inner product threshold, we also expand=X; + eX,+e"Xs+: - or, for
the individual components,

(X,X’>=ROJ ¢*¢’d§+Rof P ¢'d§+J 9* 9" dX, b= b,COSTZ+ €oSiN2TZ+ -+, (20)

(15) J=leinwz+ e(;ZO%-'zZzCOSZWZ)-F R (21

for which the operatot. is self-adjoint.
Using the notation

QUXi X))+ QX Xi) =(1+8)(QF . QT . QY.

5=51008nz+ 5525in27rz+ el (22

Equation(19) leads to

(16) LX;=0, (23
we have in Eq(9), LX,=Q(Xq,X1)+Q(X1, X))+ 0 VX, (24)
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LX3 Q(Xzy 1)+Q(X1,X2)+Q(X1,X2)+Q(X2, 1) ‘Tf; s h (115++13
+ oF !
+0'1VX2+ 0'2VX1_ RZGXl' (25) o
-+ .
Using a notation similar t¢16), we define (I‘,EZ —2mr _hg_ (|J:_15+j3 ,
1 3 r
QX XD +Q(X X)=Q; 7=(Q %, Q% Q" _ _
iy : . Yo P.o; " o = PS5,
Writing the solution of Eg. (23) in the form
Xi= BU(EZ) +c.c., whereB is an arbitrary constant, we have Sn 8 11 -
in the right-hand side of Eq24), 0, = R0p+ 5++J3 +isor 5+ ,
Qux 8 oy (I a8
Jl @2 Rop,b‘ 5 +J3 +J3 -

L5t s (AB* ek X+ ABEK M)sin2mz+c.c.

P
The coefficient 6 and p* defined by the condition
= 12(5hA|3* KXy staBeK ¥ +ce. | AN T(2mz)=5"eX T(2mz) and PE* *T(2m2)
Pr =p~e’X XT(27z), (where the functioi stands for sine or
ja(57 AB* ek X+ 5o ABEX X)sin2mz+c.c. cosing, are given by
2 [ 0
@7 St=— 4772+4k200§§, (39
where we have introduced the wave vectors .
YR R [ 0
K==ki*ks, @8 5 =- 4w2+4kzsin2§}, (40)
and defined the numerical constants )
[ 913 0
) 3 L, . m’k? | RokK?mw pt=—|4m2+4k?*co€ | —4m?r?+4k?Rycog =, (41)
Ji=— 57k, Jom— e, 3T (29) ! 2 2
2 kp 2ky
TV o ' L0 L0
Furthermore the coefficients, given by Apek * p=-— 4772+4k25|n2§ —47r272+4k2R05|n2§, (42

=5y =aik™ X reads as
where the cdsg/2 and sirk 6/2 contrlbutlons result from the

5;:_4k20052f' 5g:—4kzsin2f. (30)  action of the horizontal Laplacian ol X and e X re-
2 2 spectively.
Since (v(k ),Q(X{,X )+Q(X ))=0, while An |mportant observation is that the contribution
2 19771 1:/M1

\If AB*eK X to ¥, (which disappears at infinite Prandtl
numbey diverges in the limit)— 0, where it can be viewed
as associated to a “mean flow” generated by the rotation.

(v(Ky), VX1>¢O the solvability condition for Eq(24) im-
plies o;=0. Straightforward algebra then leads to

PAhZ’ZZ AQ(ll-%Jr - Q<2> + AhQﬂ, (31  This term is specific to free-slip boundary conditions and has
_ T no equivalent when rigid boundaries are considered. The di-
AA o= =T, Ans, (320  vergence originates from the fact that in E¢BD—(34), the
dynamics of the mean flow is slaved to that of the leading
AAhlﬁo Ql 1 (33 convective mode. This “adiabatic approximation” is valid at
finite 6 but breaks down in an “angular boundary layer”
A,= Q%+ RoAnd. (34 neard=0, where time derivatives become relevant. Postpon-

ing to Section IV the analysis of this layer, we derive here

Iving in the f
Solving in the form the solvability condition of Eq(25) for finite 6, by writing

—d;ABEX X+ D, AB* e *+c.c., 35 L~
b= 2 39 (v(ky),GX1)=3C,C5k?B*, (43
o DT K" X 1T~ AR* ek X
= + +c.c. -~
V=V ABET T, ABTER Thec, B0 (1 (Ky) V) = H(RoP, ~162KPk,? — RoP, " 103K?+ C2)B*
Jo=TiABEK X+ T AB* K e, 37) (44
~ ~ e e~ .- " v v — 4 A|2B* .
192=®;AB€‘k+'X+2_AB*elk .X+C.C., (38) <U(k2)1(Q(x21Xl)+Q(X11X2)> 401C3k |A| B (45)
Furthermore
we get
i ~ i Q(X1,X2) +Q(X2,X1) =Z(q}%, a3, a5 %) |A2B*
‘Dz ( 8 +is), @,= ( o +is Cik %
p* p xXe "2 *+c.ctFg, (46)
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whereF; refers to non-resonant terms proportional to sin8r cos3rz. We also have
4

S+ 2W ) (cym2— k2 — 2¢, m2cosd— 2¢,msing) + (W5 — 2W ) (¢ — ¢ k2 + 2¢, m2cosh

912 35,
+2¢,mSiN) + 20 K3(C,(1— cosh) + mCy8ind) — 2 5 k2(co( 1+ cosh) — e, sind) ], (47)

kK~ ~
q(l%= - ﬁ[Zq’g(clw( —1+42c09—c0s29) + C,(Sinf—sin26)) + 2W 5 (¢, m( — 1 — 2coP— €0s29) — C,(Sind+sin26))
r

+ {ffz*sina( —2c¢,msing+cy(1+2co9d)) + \'ffz’sina( —2cymsind—cy(1—2co9)) + 5;((:277(1— cos29) — m?c4(2sind

—sin20) + &5 (Com(1— cos2) + m2c,(2sind+sin26)) ], (49)
k? ~ _ 2 - - _
qf%z ?[®§(clw(1+cosﬁ)+czsin9)+®2+(cl7r(1—cose)—czsin0)]+ ?cg[\lf§+2\1fg—\lf2’—2\lf5]sin0. (49
It follows that
(0(K2),Q(X1,Xz) + Q(X2,X1)) = § (RoC1a{ 5+ RoC2a 3+ a1 %) | AI2B*, (50)
and finally
1
I 5C1Cak2— §c§c3k4+ RoC103+ RoCo01 5+ Caa'
_2__ 2 Al? 1
R RoP; ~1c2k?k,2— RoP, ~1c3k?+C3 A% (52)

where€?|A|? can be expressed as the latter coefficient collecting contributions originating
oK2 from ¥y .
——L 2 (Ra—Ry). The divergence shown in E¢62) was noted in Ref. 9. It
Rok®— T Z indicates that the above analysis should be viewed as an
P; outer expansion, and that a different scaling is required for
small 6. In the following, the growth rate given by E¢1)
will thus be denotedr, e, -

Since in the limit6—0, \Trg diverges like sin? 612, the
guantity q(') with 1=1,2,3, scales like sif2¥,
~sin 1 @/2, and the growth rate behaves like
T2k?| Al?

2keP, 0 (52 , ,
sin; The small angle divergence of the stream function
o~ esin 202 and of the growth ratery e, ~ €2sin 612,
indicating a breakdown of the above asymptotics at finiteindicates that new scalings in are expected in an angular
Prandtl numbers, in the case of small angle perturbations. boundary layer nea#=0. Denoting bye“ the thickness of
Pushing theg-expansion at the next ordéais needed in this layer, bye” the amplitude of¥’, and bye” the magni-

o~ IV. THE SMALL-ANGLE INSTABILITY

Section 1), we write

tude of the growth rate in this layer, the matching of the
“outer” and “inner” regions requires f=1-2a and

212
o~ " ﬁ 26+ 1 A2, (53  y=2—a. Since, in the inner region, the time derivative in the
2Ky P sing mean flow equatioitwhose presence will remove the diver-
2 gence becomes comparable to the viscous term whelq,
with we geta=3 B=-1and y=4%.
Furthermore, when expanding Ed) inside the bound-
ry ks ary layer, the parameterappears not only through the hori-
n= Ry 1 222 (54 zontal Fourier modes of; whose amplitudes scale like en-
1+ P_( 1- W)) tire powers ofe, but also through the angular dependence of
' 0 the operators involved in this equation. We are thus led to
and expand
2
__ T (55) o= eoy+ € yat €Pog st 20y+ € Poqpt €0y
€ 1 522
2,2 Tm
P kpk 1+—(1 W)) +--- (56)
r 0
and
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X=€ YN _ 1ot Yo+ Xo+ €V ot €23 at eX, The solvability of this equation requires
+ eVt €Kt € Xgt €Ky €Bo55= ek?sing| A2 W} (66)

~ ~ A 2
+ K 0t Xyt -+, (57) t order €,
2] Y. — 2 25 1) =(2) —3) 2R aiky X
-~ ~ Py LXs= €2Q7 o+ €2Z(qY A?Bé*2
where terms of the forny, =W, B*Ae* *(0,1,0f+c.c., €LXe=€Qrat €°2(dr.017,013)|AI"Be

are introduce_d to car_lcel almost re_sonant C(_)ntributi(_)ns result- + 62’3sin0"l"’i l/geikz-x|A|ZBZ

ing from the interaction of the basic rolls with quasi-parallel

perturbations. As seen later, in the boundary lagecan be k* Kkt .6 30
complex. X _2P_rCZ7TSIn0'P_rcl7T smi—sm? ,0

Substituting(57) and(56) in Eq. (19) and concentrating
on perturbations such that the anglebetween the wave

vectorsk; andk, is of ordere?3 we obtain the following

~ — - [ K% Kic
+e4f3sin9\1f§,3|A|ZBe'kz-Xz(— 575 2 —K3c4
r r

hierarchy. o T o - o
At order EO, — € RzGX1+ € UzVBU(kz) + C.C."‘!/{/.,%;), (67)
L?lz 0, (59) where
. k4 ~ _
leading to (973,93 ,Ef%)=(0,45c1w\lf§ ,kzclw;) (68)
_ . r
X;=v(ky)B+c.c. .
1=v(k)Btcc 59 denotes the limit ag—0 of the vector §1%,9'%,9{%) from
At order e, which the contributions coming from¥, have been re-
0 moved. The solvability condition reads
F 2 0 ~
LX,= _ 41;" ABdK" X 2o,=—n|A|?e2+ 262’3§k25inesin§|A|2‘le*l,3
r
— 4j,k2AB* ek Xsin2mz + e¥sing| A2V 3 (69)
+0,BVo(Kp) +c.C. (60)  Where
- " 1
The solvability condition reads I 5C1Cak2— 50i05k4+ RoClaf%+ RoCzaf%+Csaf‘%
€01=0, ©y  7=- RoP, 1c2k?k,2— RoP,  1c2k?+ 3
and the solution is given by (70
0 identifies with the expression given in E¢p4). The coeffi-
- ~. s cient ¢ is given by Eq.(55).
Xy= Vo ABé€ +c.c. (62 Combining the solvability condition$61), (64), (66),
(:5§AB* ek Xgin2mrz and(69), we are led to express the growth rate
with T = — j,/4k2P, and®; = j5 (k& 72). Tinner= €g3+ €ogst €0z, (79)
At order e*?, in terms of the “mean flow”
X 4= €235ingW* | o A 2B ez W= WP W+ VA, (72)
k%2 Kkic, in the form
xZ| — =2 == —Kk3;
Pr P" 2ai 2 ; o 2 2
. Tinner= €K“SiNG|A| 1+2§sm§ ¥ —e“p|Al4, (73
+€*304,3VBv(ky) +c.cH .1 %, (63

where subdominant corrections have been neglected.

where .J".7%2 collects non-resonant terms. The solvability In order to estimate the mean flow, we push the

condition is e-expansion of Eq(4) at higher orders, where the beating of
€30 ,,3= ek®sing|A|2e~ Usg* 13- (64)  the perturbation with thg basic solution produces contribu-
At order <53 tions of the form e'(k17%2'* which become space-
tordere™, independent and thus resonant in the sndalimit. Conse-
65/3|_§5/3: Esin0@3|A|zBeil§-£ que_n_tly, uniform boundedne_s_s of thg_solutions requir_esf, in
addition to the usual solvability conditions, the prescription
k4k,23 k*c, 5 of “quasi-solvability conditions” aimed to eliminate terms
XZ| = P, ' P, T~ K°C which are strictly resonant only fo#=0. This approach is
) similar to that used by Ablowitz and Benrléwhen dealing
+ €0 VBu(ky) +C.CH N 2. (65  with the small-amplitude divergence of the Whitham modu-
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lation analysis for non-linear dispersive wavsee also Ref. same functional dependence and originating from the beating
12). These authors modify th@lgebraig dispersion relation of the basic rolls with quasi-parallel perturbations. Like in
by means of additional corrective terms determined by a conthe small-amplitude limit of non-linear waves, this condition
straint which becomes an actual solvability condition in thebecomes an actual solvability in the lindt—0. In both in-
small amplitude limit, thus transforming the algebraic disper-stances, the singularity is prevented by removing slaving
sion relation arising in Whitham’s theory, into a partial dif- conditions: that of the amplitude with respect to the phase in
ferential equation for the wave amplitude. In the context ofthe case of waves, or that of the mean flow with respect to
rotating convection, we include contribution, propor-  the convective modes in the present problemmpare Egs.
tional to k172X jn the perturbation expansion, which are (32) and (80) below].

determined by cancelling them with the terms displaying the At order €”3,

€5, 0, AB*e* " *sin2zz
€PLXyat | € M5,2W_ AB* ek X4

0
Jléh 57 (AB* % X+ ABEX X)sin2mz+c.c. 0
_ - 3% 1o— _— 137, * oik X
€ 3[Q1;,/3]+6 |Jp_25hAB* “iice + X P, Lo e W _ AB*e +c.c.
0
j307 ABEK" Xsin2mz+c.c.
~ K4 k4 6 36 ~ = K% Kic
+ esingW} ek2 | A|2BZ 2—czqrs|n6 p G siny —sin—-|,0 + 3sing W3 Aeke X7 —P—p, Pz,_ 2c,
r r
+ €0y N Xo+ € BV Xy, (74)

where[Q; 73] denotes the leading order Q‘(Xl,§4,3)+Q(7(4,3,X1). Although;(4,3 contains terms proportional m*”ZZ';,
the resulting contributions of the foref* * in Q,7; are preceded by a factor proportional to’s#2 and thus not included
in [Qq72]. The quasi-solvability condition then reads

— €y P LSVt e V352Ut €8y j,P t=0. (75)
At order €3,
0
U Kot | — P8y €PoygVh + 6, 2V — P tePoggl* 4
0
0

8 ~ ey 0
=[Qzs4l+ ezp—k4\Ifo(Be‘1/3\I”i1,3e"‘+'x+c.c.)sin00052§ + 3%5ing T 2 | A|2B Z
r

0
X 2k4 '0k4 i '300 76
Prczwsm ,Prclw smi S|n7, . (76)
The quasi-solvability condition is
— Pyt Boryygdy Wh + 57 2WE — P ey 38, (67 VA =0 (77)
where, as previously,Qs/3 1] does not contribute.
At order €3,

ELX,= €[ Q13+ Qa1+ Qu3]— €R3G Xy — €3R,G X+ €3(72V Xo + 3V Xy) — (0,635, 2W% AB* e K %4 ¢.c.,0
+ (0P 187 gy U |t 04Vt 05V )AB* e K X4c.c.,0t, (78)

with the quasi-solvability condition
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Sy APV )~ P 20,8, (67 W )

— P, eP058, (13U ) — Py e g a0, W5 =0, 0.5
(79
Combining Eqs(75), (77) and(79), we get, up to sub- 15 50 25 o f \ O+ 95 50 75 0
dominant contributions, ‘ = >
—P; Yoiner¥ + 8, W =€P; Y, (80) ot | U .
s . +
which together with Eq(73), constitute a closed system. . 1 o 10
Solving the resulting quadratic equation for the growth rate, ' H b
we obtain two solutions ; Loor G ;
L1 0 o_|i
O—innerzz(_6277|A|2_4k2PrS|n2§) it lo_ et

1
+—
2

0 2
<62n|A|2—4k2Prsin2§>

FIG. 1. Instability growth ratesr* ando~ or their real part when com-
plex conjugate(full line), together with the diverging “outer solution”
(dashed ling versus the perturbation angk (in degrees for P=10,

6 1/2
—4€%Kk3sing| A%, 1+2$in§§” , (81) 7=10ande=0.1.

where 7, £ and j, are defined by Eqe54), (55 and (29).

This expression covers several regimes.

(i) For 6~ €
. .0
Tinner™ —( —4k2PrS|n2§)

1
2

In this range,o

(i) When 6> €23,

2
—[(4k2P sir? ) —4€%k%sing| A|?j ,

iner=>0 for >0 (6<0) if >0 (respec-
tively, 7<<0) for any finite value of the Prandtl numbstill
assumingP,>0.6766) and of the Taylor number.

ence of various parameters like the Prandtl number and the
rotation rate on the strength of the instability, is illustrated in
the following figures.

Figure 1 shows the variation of the eigenvalees with
the angle ¢ of the perturbation forP,=2, e=0.1 and
7= 10. For anti-clockwise rotation and finite Prandtl number,
the growth ratec™ is positive for small enough positive
anglesd. There is also a range of negative angles, where
there are two complex conjugate eigenvalues, with negative
real parts. The dashed line represents the outer solution
oouter Which diverges in the limit)—0. The other eigen-
valueo~ which, ase—0, becomes marginal in a neighbor-
hood of #=0, is of order unity outside the angular boundary

layer. It thus cannot be computed perturbatively torof

rr2k? 1 order unity but, being always negative or complex with a
+ - 2| A2 . : . -
Tinner™ Tmatch=| — 7+ _2_2k 2&+ ol € |Al%, negative real part, it cannot lead to an instability.

smz Figure 2 displays the growth rate” for 7=38, e=0.1

83) and various values of the Prandtl number for positive angles.

and matches the limit ofy e, 8S #— 0. Similarly,

Tinner~ — 4K?P, sm2— (84)

is negative and becomes of order unity outside the boundary
layer.
(iii) For 6~ €

O-itnnerN %(_5277|A|2)
+3[(29|AI?)?—4€%K3sing| A% 1M, (85)

and for 8=0, o, Vanishes, whiler;,,(0)=— €2 7|Al2.
We thus obtain a uniform representation fof

e]— wl2,wl2], of the instability growth rate near the con-

vection threshold, of the form -0.1

+_ +
0" =0innert Oouter™ Tmatchs (86)

where the various terms arising in the right-hand-side of EdriG. 2. Growth rates, versus the perturbation angts>0, for =38,
(86) are given by Egs.(51), (81) and (83). The influ-  e=0.1 and different valueP,=5,10,25,50 of the Prandtl number.

Phys. Fluids, Vol. 9, No. 1, January 1997 Ponty, Passot, and Sulem 73

Downloaded-13-Dec-2007-t0-192.54.174.98.-Redistribution-subject-to-AlP-license-or-copyright;=see-http://pof.aip.org/pof/copyright.jsp

We observe that both the range of unstable angles and the



V. NATURE OF THE INSTABILITY AND NONLINEAR
DEVELOPMENTS

We showed in Section IV that in a rotating horizontal
fluid layer with moderate Prandtl number, limited by top and
bottom free-slip boundaries, convective rolls are linearly un-
stable with respect to perturbations in the form of rolls mak-
ing a small angle with that of the basic pattern. This insta-
bility occurs even when the rotation rate is too low for the
existence of the Kppers—Lortz instability. It is related to the
divergence of the growth raté&2) which, at finite Prandtl
number, occurs when the direction of the wave vector of the
perturbation, approaches that of the basic rolls. We here
chose the associated wave numbers to be critical, but the
effect survives whatever their values.

FIG. 3. Growth rates, versus the perturbation angte>0, for P=15, The_ above instability was obtain_ed in an_infinite domain.
€=0.1 and different values= 10, 40, 60, 100 of the rotation rate Its persistence with lateral boundaries requires the presence
of a large number of rolls, and thus a convective cell with a
large aspect ratig. 1. The mesh size in Fourier space scal-

. ing like u, the minimum angle between two wave vectors,
maximal growth rate decrease when the Prandtl number I . 12 o ; .
ehaves likeu™. Since for the small-angle instability

mgreased. AtPr. 10, .t.he small anglea instability and the o~ €¥3 and 6~ €22, it follows that o~ , a growth rate in-
Kuppers—Lortz instabilitaround 6=50° can be separated, . : .
) . termediate between thébf order unity of a pure amplitude
in contrast with the case of smaller Prandtl numberg. . o . o . L
- N . instability and a phase instability, whieh scales likeu“.
P,=5) where all the angles©0<64° are unstable. For this . ) .
As shown in Refs. 18 and 19, in the absence of rotation,

rotation rate, only the small angle instability survives at
parallel rolls may also be unstahl®r wave numbers larger

Prandtl numberP,=15. It becomes hardly visible at " : : "
P.=50. Indeed, as the Prandtl number goes to infinity, thethan critica) to a skewed-varicose instability whose growth

. : _ - : rate also varies like the inverse aspect ratip a scaling
negative eigenvalue~ has a limit, while the outer expan- . ; .
. + . ! resulting from the strong magnitude of the mean flow in the
sion o,er €Xxtends toward¥y=0 where it asymptotically . " o L
_ . . case of free-slip boundary conditions. This instability is how-
reaches the value~(0), the inner range reducing to the . X
; . ever not captured by the present formalism since the roll
ver'ucgl axis. L . . distortions involved in this instability cannot be represented
Figure 3 shows the variation of the instability growth

rate with the rotation rater, for P,=15 and e=0.1. For within the class of perturbationsuperposition of two fami-

=10, only the small angle instability is present. The“eS of straight roll$ we have considered.

. : . . : o In order to investigate the relation between the small-
Kuppers—Lortz instability(again localized around=58°) . X

: : o o angle and the skewed-varicose instabilities, and to analyze
arises form=~40 and is strongly amplified asis increased.

Figure 4a) displays fore=0.1, the critical value of the tsheirlirt n;nigzegzv?;falgﬁgi':f' aesggzg: ogu?qg:jol?ns mthtZe
rotation rater for the onset of the Kppers—Lortz instability, P g €da ' pling

as a function of the Prandtl number, as long as the latter ilseadmg vertical mode to the mean flow, was derived by a

. - . gerturbation expansion near threshtidhis system which
large enough for the two instabilities to be separated. I:'gurpreserves the rotational invariance of the problem, general-
4(b) shows the most unstable anglen degrees for the '

Kuppers—Lortz instability, versus the Prandtl number, for a 23 equations obtained by Mannewifleat finite Prandd

X ) . o number in the absence of rotation. In a simplified version
rotation rate corresponding to the onset of the instability. where the non-local couplings are suppressed and only a few

representative nonlinear terms are retained, it is also consis-
tent with models used in Refs. 17 and 18 for rotating con-
vection at infinite Prandtl number. A similar model was con-

Pr sidered in Ref. 19.

100 ' As discussed in Ref. 15, the phase equation derived in
the context of the generalized Swift—Hohenberg equations,

: shows that the skewed varicose instability occurring without
50 rotation near onset, becomes asymmetric with respect to the
: angle of the phase perturbation, in the presence of rotation.

1 : 46 | S This model also shows that both the asymmetric skewed
10 30 50 20 40 60 80 100 varicose and the small angle instabilities lead, by means of

(a) T Pr reconnection, to a progressive rotation of the convective rolls

in the direction of the external rotation, an effect due to the

FIG. 4. Kippers—Lortz instability boundary in theP(,7)-plane (a), and mean flow which deveIOpS shear Iayers. .
angle associated to the unstable perturbation at the critical Taylor number VW€ are thus led to conclude that the small-angle diver-

versus the Prandtl numbé). gence of the Kppers—Lortz instability growth rate pointed
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