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Pattern dynamics in rotating convection at finite Prandtl number

Y. Ponty, T. Passot, and P. L. Sulem
CNRS UMR 6529, Observatoire de la Coˆte d’Azur, Boıˆte Postale 4229, 06304 Nice cedex 4, France

~Received 24 March 1997!

A Swift-Hohenberg-type model is derived for rotating convection in a Boussinesq fluid at a moderate
Prandtl number, for both free-slip and rigid top and bottom boundary conditions. In the former case, a phase
dynamics analysis is used to relate the skewed-varicose instability, which can occur in the absence of rotation,
and the small-angle instability which develops for arbitrary rotation rate and leads to a continuous rotation of
the rolls. Numerical simulations show the ordering effect of a moderate rotation which counterbalances the
destructuring effect of the mean flow. In the free-slip case, this effect induces the formation of coherent targets,
associated with large vortices of the same sign as the external rotation. In the no-slip case, this leads to a
maximum correlation of the patterns for a rotation rate of the order of the critical value for the onset of the
Küppers-Lortz instability.@S1063-651X~97!12509-0#

PACS number~s!: 47.27.Te, 47.20.Lz, 47.52.1j, 47.54.1r
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I. INTRODUCTION

In addition to its relevance in the context of astrophysi
and geophysical fluid dynamics, rotating convection provid
a prototype to study the transition to spatiotemporal ch
@1#. The reason is that, close to onset, a chaotic dynamics
result from the destabilization of the basic patterns throu
the Küppers-Lortz~KL ! instability @2–5#. It turns out that, at
a finite Prandtl number, special dynamical features can
pear. With free-slip boundaries, due to the presence o
intense mean flow, straight parallel rolls have been show
be linearly unstable relative to a small-angle instability
any value of the rotation rate@6#. With rigid boundaries,
experiments in cylindrical boxes have also revealed that
KL instability can arise below the critical rotation, a ph
nomenon attributed to the influence of sidewall defects@7,8#.
A recent thorough experimental study of convective patte
with moderate rotation@9# demonstrated the richness of th
system, and pointed out a number of still unresolved qu
tions that deserve theoretical and numerical investigation

Several models in the spirit of the Swift-Hohenberg eq
tion have been built in the limit of the infinite Prandtl num
ber @10–12#. In this regime, the main observation is th
when the Taylor numberTa exceeds the critical value for th
Küppers-Lortz instability, the destabilization of straight pa
allel rolls ~which arises as soon as the Rayleigh numbeR
exceeds the convection thresholdRc), leads to the formation
of patches of straight rolls penetrating each other in a cha
way: rolls disappear and are replaced by other rolls tilted
an angle close to 60°.

The aim of the present paper is to address the problem
rotating convection at a moderate Prandtl number, ta
larger than the critical value (0.677 in the case of free-s
boundary conditions!, above which overstability is not pos
sible and the convective instability leads~near onset! to the
formation of steady straight parallel rolls@13#. In Sec. II, a
model is derived in the context of both rigid and free-slip t
and bottom boundary conditions, whose strong influence
the mean flow significantly affects the dynamics. In horizo
tal directions, the flow is assumed to be periodic. It improv
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a model given in Ref.@14# in the case of rigid boundaries, b
the inclusion of additional couplings, and by a better p
scription of the coefficients, resulting in more accurate v
ues for the KL instability threshold.

The phase dynamics is analyzed in Sec. III where, in
case of free-slip boundaries, particular attention is paid to
relation between the small-angle instability and the skew
varicose instability which can arise in the absence of rotat
@15,16#. In the fully nonlinear regime, a main conclusio
concerns the relaminarization which takes place for rotat
rates comparable to the critical rotation for the onset of
Küppers-Lortz instability. In the case of free-slip boundar
~Sec. IV!, this effect leads to the formation of coherent ta
gets and vortices. With rigid boundaries~Sec. V!, disloca-
tions can totally annihilate each other, and lead to the st
lization of straight parallel rolls. Section VI briefly
summarizes the main results.

II. A MODEL FOR ROTATING CONVECTION

A. An asymptotic model near threshold for free-slip boundaries

The Boussinesq equations in a horizontal fluid lay
heated from below and rotating around a vertical axisẑ are
written in the nondimensional form

DV1 ẑu2¹G2t ẑ3V5P21~V•¹V1] tV!, ~2.1!

¹•V50, ~2.2!

Du1Rẑ•V5V•¹u1] tu, ~2.3!

where the vertical diffusion time is taken as time unit. T
other parameters are the Rayleigh numberR and the square
root t of the Taylor number~twice the Rossby number!
which, to be specific, is taken to be positive.
4162 © 1997 The American Physical Society
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56 4163PATTERN DYNAMICS IN ROTATING CONVECTION AT . . .
It is convenient to rewrite the velocity fieldV5(u,w) in
terms of a potentialf and a stream functionc, in the form

u5~u,v !5~¹hf2ez3¹hc!, ~2.4!

Dhf52]zw, ~2.5!

where the subscripth refers to the horizontal directions. Ap
plying successively the operators curl and curl2 on Eq.~2.1!,
and projecting the resulting equations on the vertical axis,
obtain

~] t2PD!Dhc52tP]zw1]x~V•¹v !2]y~V•¹u!,
~2.6!

P21~] tDw1Q1!5D2w1Dhu1t]zDhc, ~2.7!

with

Q15Dh~V•¹w!2]z@]x~V•¹u!1]y~V•¹v !#. ~2.8!

Applying the operators (] t2D) to Eq.~2.7!, Dh to Eq.~2.3!,
and2tP21]z to Eq. ~2.6!, and summing the resulting equa
tions, we obtain

2P21] tt
2Dw1~11P21!] tD

2w1Q2

5D3w2RDhw1t2]zzw2t~12P21!]z] tDhc, ~2.9!

where

Q25P21~D2] t!Q12Dh~V•¹u!1tP21]z@]x~V•¹v !

2]y~V•¹u!#. ~2.10!

As already mentioned, we assume that the Prandtl num
exceeds the minimum valueP* '0.677 for which, in the
case of free-slip boundary conditions, the convective ins
bility first sets in as stationary convection, and define
stress parametere5(R2Rc)/Rc where Rc is the critical
Rayleigh number. Denoting the critical wave number byqc ,
we have@13#

Rc5@t2p21~p21qc
2!3#/qc

2 , ~2.11!

with qc given by

2qc
613p2qc

45p61p2t2. ~2.12!

Near threshold, we perform the Galerkin expansion

w5w1sinpz1w2sin2pz1•••, ~2.13!

f5f1cospz1f2cos2pz1•••, ~2.14!

c5c01c1cospz1c2cos2pz1•••, ~2.15!

u5u1sinpz1u2sin2pz1•••, ~2.16!

wherew1, f1, c0, c1, andu1 are of ordere1/2, while w2, f2,
c2, andu2 are of ordere. Furthermore, time derivatives ar
assumed to be of ordere. The horizontal structure is lef
unspecified, in order to preserve isotropy. We neverthe
assume that the pattern can locally be viewed as a supe
sition of slowly modulated rolls with critical wave numbe
e

er

-
e

ss
o-

qc . When acting on a field locally periodic in the horizont
variables, the Laplacian operatorDh thus reduces, to leading
order, to the multiplication by2qc

2 . The horizontal gradient
¹h is of order one in the direction across the roll and of ord
e1/4 in the direction along the roll. Since the direction of th
structure is not specified,¹h must in general be considered o
order unity. However, when acting on slowly varying qua
tities,¹h will be of ordere1/4 andDh of ordere1/2, as used in
Ref. @17#. We thus write Dhw15(2qc

21L)w1 with
L5O(e1/2). In this approach which combines ane and a
Galerkin expansion in the vertical direction, it turns out th
subdominant terms are possibly retained at each orde
approximation.

At order e1/2, the linear analysis is recovered. Definin
qp

25qc
21p2, we have

2qp
6w11Rcqc

2w12t2p2w150, ~2.17!

qp
2qc

2c15tpw1 , ~2.18!

qp
2u15Rcw1 , ~2.19!

qc
2f15pw1 . ~2.20!

At order e, when projecting on the first Galerkin mode, w
have

3qp
4Lw12RcLw150. ~2.21!

At order e3/2, using Eq.~2.18!, from Eq. ~2.7! we obtain

3qp
2qc

2F11
1

PS 12
2t2p2

Rcqc
2 D G] tw15~eqc

2Rc23qp
2L2!w12Q.

~2.22!

The nonlinear termQ stands for thee3/2 contribution arising
from the quantityQ2 defined in Eq.~2.10!, when projected
on sinpz. After straightforward algebra, we obtain

Q5P21~Dh2p2!DhF ~u0•¹hw1!1
1

2
~u1•¹hw22u2•¹hw1!

2
p

2
~w1w2!G1pP21@~Dh2p2!¹h•2tez•¹h#

3F ~u1•¹hu01u0•¹hu1!1
1

2
~u1•¹hu21u2•¹hu1!

2
p

2
~w2u112w1u2!G2DhF3qp

2u0•¹hw11
1

2
~u1•¹hu2

23qp
2u2.¹hw1!2S pw1u21

3p

2
qp

2w1w2D G ~2.23!

where, writingb5t/qp
2 , we defined

u05S ]yc0

2]xc0
D , ~2.24!

u15
p

qc
2S ]xw11b]yw1

]yw12b]xw1
D , ~2.25!
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u25S ]xf21]yc2

]yf22]xc2
D , ~2.26!

and neglected terms involving derivatives of the slowly va
ing field u0.

Similarly, the contribution of ordere to the projection of
Eq. ~2.7! on sin2pz reads

~Dh24p2!2w21Dhu222ptDhc2

5
qp

2p

2Pqc
4
DhM1

p3

Pqc
4
bN2

2p3

Pqc
4

b2H, ~2.27!

where

M5~¹hw1!21qc
2w1

2 , ~2.28!

N5@¹h~Dhw1!3¹hw1#•ez , ~2.29!

H5]xxw1]yyw12~]xyw1!2. ~2.30!

From Eqs.~2.3! and ~2.6!, we have, at this order,

~Dh24p2!u21Rcw25
3p

2

qp
2

qc
2
M, ~2.31!

~Dh24p2!Dhc222ptw25
bp2

2Pqc
4
DhM2

p2

2Pqc
4 ~12b2!N

2
2bp2

Pqc
4
H. ~2.32!

Finally, the equation for the mean flow is also derived fro
Eq. ~2.6! in the form

~] t2PDh!Dhc05
p2

2qc
4 ~12b2!N2

bp2

qc
4 @~Dhw1!2

1¹hw1•¹hDhw1#. ~2.33!

Note that the term involving the time derivative is smaller
a factore1/2 than the other terms. It must nevertheless be k
when dealing with the large-scale, long-time dynamics. T
term is particularly necessary for a uniform description of
instability growth rate of straight parallel rolls perturbed
other rolls turned by an arbitrary angle@6#. We finally obtain
the set of equations

t0] tw15@e2j0~Dh1qc
2!2#w12gQ, ~2.34!

~] t2PDh!Dhc05
p2

2qc
4 ~12b2!N2

tp2

qp
2qc

4 @~Dhw1!2

1¹hw1•¹hDhw1#, ~2.35!

Dhf2522pw2 , ~2.36!
-

pt
s
e

DS w2

c2

u2

D 5FSMN
H
D , ~2.37!

with Q given by Eqs.~2.23!–~2.26! andM, N, andH by
Eqs.~2.28!–~2.30!. Furthermore,

D5S ~Dh24p2!2 22ptDh Dh

2pt 2~Dh24p2!Dh 0

Rc 0 ~Dh24p2!
D ,

~2.38!

F5S pqp
2Dh

2Pqc
4

bp3

Pqc
4

2b2p3

Pqc
4

2
bp2Dh

2Pqc
4

~12b2!p2

2Pqc
4

2bp2

Pqc
4

3p

2

qp
2

qc
2

0 0

D , ~2.39!

and we define the parameters

g5
1

qc
2Rc

, j05
1

qc
2qp

2
, t05

1

qp
2F11

1

PS 12
2t2p2

Rcqc
2 D G .

~2.40!

B. Linear stability analysis

In order to validate the model derived in Sec. II A, it is
interest to compare its predictions relatively to the Ku¨ppers-
Lortz instability, with the results derived from the primitiv
Boussinesq equations@6#.

In the context of Eqs.~2.34!–~2.35!, straight parallel rolls
with critical wave numberukW1u5qc are given to leading or-
der by w15aeikW1•xW1c.c. and c05(tp2/8qp

2P)a2e2ikW1•xW

1c.c., with an amplitude a5e1/2
„1/2qp

2@1
2(t2p2/qc

4RcP
2)#…21/2. We consider an infinitesimal pertur

bation of this steady solution given to leading order by

w̃5b~ t !eikW2•xW1c.c., ~2.41!

c̃5h1~ t !ei ~kW12kW2!•xW1h2~ t !ei ~kW11kW2!•xW1c.c., ~2.42!

where the wave vectorkW2 has the same modulus askW1 and
makes an angleu with the latter. Introducing the variable
z15ah1* and z25a* h2, and neglecting higher-order ha
monics, we obtain the linear system

] tF b

z1

z2

G5F eG̃~u! v1~u! v2~u!

ep 24qc
2Psin2

u

2
0

ep 0 24qc
2Pcos2

u

2

G F b

z1

z2

G
~2.43!
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wherep5(tp2/qp
2qc

2)uau2. The precise form of the function

G̃, v1, andv2 was computed usingMATHEMATICA software
for symbolic calculations.

In the limit of infinite Prandtl number, the Ku¨ppers-Lortz
instability is accurately recovered: when the rotation ratet
exceeds the critical value 47.8, two-dimensional rolls
come unstable for perturbations, making an an
uc'58.11° with the basic rolls. More generally, at a fini
Prandtl number, the growth rates obeys

2s31@eG̃~u!24Pqc
2#s21@4eqc

2PG̃~u!

24P2qc
4sin2u#s1eF G̃~u!4P2qc

4sin2u

14pPqc
2S v1~u!cos2

u

2
1v2~u!sin2

u

2D G50. ~2.44!

Figure 1 displays, for various values of the Prandtl numb
and various rotation rates and distances from threshold,
growth rate of the unstable mode as obtained from the ab
model~solid line!, and as derived in Ref.@6# from the primi-
tive equations~dashed lines!. An excellent agreement is ob
tained throughout the range of perturbation angles. Note

FIG. 1. Growth rate of the small-angle and Ku¨ppers-Lortz insta-
bilities obtained from the complete model~2.34!–~2.40! ~dashed
line! and from the primitive Boussinesq equations~solid line!, for
different values of the Prandtl numberP, of the Taylor number
Ta5t2 and of the stress parametere, in the case of free-slip bound
ary conditions.
-
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ve
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the present model directly exhibits the ‘‘small-angle instab
ity’’ derived in Ref. @6# from the primitive equations using
matched asymptotic expansions. The effect on the nonlin
dynamics of this instability which results from the presen
of an intense mean flow at smallu and which exists for
arbitrary small rotation is discussed in Sec. IV.

C. A simplified model

The model considered in Sec. II B correctly reproduc
the destabilization of convective rolls in rotating convectio
but is relatively cumbersome. It is thus desirable to simpl
it heuristically, in a way which preserves quantitatively
most prominent features. In this section, we also extend
model to the case of no-slip top and bottom boundaries
the latter case, we systematically derive all the linear ter
and also the nonlinear terms entering the mean flow eq
tion, but resort to modeling the nonlinear couplings arising
the equation for the convective modew.

Assuming that the fieldw can be viewed as a superpos
tion of straight rolls with different wave vectors, the nonlin
ear termN vanishes andDhM54H. This leads to replacing
Eqs.~2.37!–~2.40! by

~Dh24p2!2w224pr 0Dhc21Dhu25
3

2

p

qc
2P

DhM,

~2.45!

4pr 0w22~Dh24p2!Dhc250, ~2.46!

Rcw21~Dh24p2!u25
3

2

p

qc
2

qp
2M. ~2.47!

Applying the operators (Dh24p2) to Eq. ~2.45!, 24pr 0D
to Eq. ~2.46! and 2Dh to Eq. ~2.47!, and combining the
resulting equations, we obtain

@~Dh24p2!32~4pr 0!22RcDh#w2

52
3

2
p

qp
2

qc
2

DhM1
3

2

p

qc
2P

~Dh24p2!DhM. ~2.48!

The action of the horizontal LaplacianDh on straight rolls
reduces to multiplication by2qc

2 . For rotations sufficiently
slow to keepqc small enough compared to 2p, we replace
(Dh24p2) by 24p2, an approximation also used in Re
@17#. Note that, although often neglected, nonlocal effe
may in some instance be relevant, as stressed in Ref.@18#.

Performing this localization as a first step, Eqs.~2.45!–
~2.47! become

2@~4p2!31~4pr 0!2#w252pF3

2

qp
2

qc
2S 11

4p2

qp
2P

D GDhM

~2.49!

and
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w25plDhM, ~2.50!

f2522p2lM, ~2.51!

u252kM, ~2.52!

c252r 0lM, ~2.53!

with

l5
3

2

qp
2

qc
2

S 11
4p2

qp
2P

D
@~4p2!31~4pr 0!2#

, k5
3qp

2

8pqc
2

. ~2.54!

Rescaling the spatial variables byqc , the time byqc
2 ,

defining W5w(gpkqc
4/qc

4j0)1/2 and C5c0qc
2(gpkqc

4/
qc

4j0), and dropping the subscripth in the horizontal deriva-
tives, we obtain

t̃ 0] tW5@ ẽ 2~D11!#2]W2Nl~W,M,C!, ~2.55!

~] t2PD!DC5
p2

2qc
2F12S t

qp
2D 2G ~¹DW3¹W!• ẑ,

2
tp2

qp
2qc

2 @~DW!21¹W•¹DW#, ~2.56!

where t̃ 05„11(1/P)@12(2t2p2/Rcqc
2)#…, ẽ 5e/qc

4j0, and
M5W21(¹W)2.

The nonlinear couplingNl , resulting from the localiza-
tion of Eq. ~2.23!, is a complicated expression which, in th
infinite Prandtl number limit, reduces to

Nl
`52DFwM1awDM2~ 1

2 22a!¹w•¹M

1
t

2
d~¹w3¹M!• ẑG ~2.57!

with a56qp
2/@(4p2)31(2pt)2# and d5(1/qp

2)†1
1„6qp

4qc
2/@(4p2)31(2pt)2#…‡. In this limit, the model is

similar to that of Refs.@10# and@11#. In particular, the coef-
ficient d identifies with that arising in Eq.~75! of Ref. @10#,
and the growth rate of the Ku¨ppers-Lortz instability is iden-
tical in both models. When the Prandtl number is decrea
this growth rate deviates significantly from that obtain
with the primitive Boussinesq equations. The localizati
procedure thus appears to be inadequate for rotating con
tion at a small Prandtl number, and we resort to heuristic
modifying the nonlinear couplings resulting from the loca
ization in a way which both simplifies their expressions a
improves the description of the Ku¨ppers-Lortz and small-
angle instabilities. For this purpose, we select a few rep
sentative nonlinear terms originating fromNl , retaining
~with modified coefficients! the terms present at the infinit
Prandtl number, except the term proportional toWDM since
its contribution in the linear analysis is similar to that orig
nating from ¹w•¹M. Among the terms involving the
stream function C, we retain the advection term
d,

ec-
ly

d

e-

(¹W3¹C)• ẑ and two additional terms,WDC and
¹W•¹DC, which appear to be necessary in order to rep
duce the Ku¨ppers-Lortz instability growth rate accuratel
We also remove the outer Laplacian which does not aff
the Küppers-Lortz stability. The effect of this operator i
however, significant far enough from onset where it contr
utes to distort the Busse balloon in a way similar to t
nonvariational terms added by Cross and Greenside@19#.
The equation for the mean flow is kept unchanged. We
nally obtain the simplified system

t̃ 0] tW5@ ẽ 2~D11!2#W2Nl~W,C!, ~2.58!

~] t2PD!DC5a0~¹DW3¹W!• ẑ

1a6@~DW!21¹W•¹DW#, ~2.59!

whereNl is now given by

Nl~W,C!5MW1a1¹W•¹M1a2~¹W3¹M!• ẑ

1a3~¹W3¹C!• ẑ1a4WDC1a5¹W•¹DC.

~2.60!

In this system,

t̃ 0511
1

PS 12
2t2p2

Rcqc
2 D , ~2.61!

ẽ 5
e

qc
4j0

, ~2.62!

a05
p2

2qc
2 ~12b2!, ~2.63!

a358 t̃ 0 , ~2.64!

a452
8

P

p2

qc
2

b, ~2.65!

a55
16

3P

p2

qc
2

b, ~2.66!

a652
p2

qc
2

b, ~2.67!

with b5t/qp
2 . The values ofa0, a3, anda6 result directly

from the localization procedure. In contrast, the coefficie
a1 and a2, are prescribed by fitting with the asymptot
model derived in Sec. II A. Indeed, a stability analysis sim
lar to that leading to Eqs.~2.42! and ~2.43!, gives, in the
present context
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] tF b

z1

z2

G5F ẽ g~u! v1~u! v2~u!

ẽ p 24Psin2
u

2
0

ẽ p 0 24Pcos2
u

2

G F b

z1

z2

G ,

~2.68!

with

g~u!5
1

t̃ 0 S 12
814a1sin2u22a2sin2u

41
a6

8
P~4a418a5!

D

FIG. 2. Variation with the rotation rate of the coefficientsa1

and a2 entering Eq.~2.60! of the simplified model for free-slip
boundary conditions and different values of the Prandtl numbe

FIG. 3. Growth rates of the small-angle and Ku¨ppers-Lortz in-
stabilities obtained from the primitive equations~dashed line! and
the simplified model~2.58!–~2.60! ~solid line! for different values
of P, t, ande in the case of free-slip boundary conditions.
v1~u!5
1

t̃ 0
S a3sinu14a4sin2

u

2
18a5sin4

u

2D ,

v2~u!5
1

t̃ 0
S 2a3sinu14a4cos2

u

2
18a5cos4

u

2D ,

p52
a6

41
a6

8P
~4a418a5!

. ~2.69!

The coefficientsa1 anda2 are prescribed by minimizing
uG(u)2g(u)u2 by a mean-square method. The variation
the resulting coefficients with the rotation rate is illustrat
for various Prandtl numbers in Fig. 2.

In order to test the validity of the above determination,
Fig. 3 we compare the growth rate obtained in Sec. II B w
that resulting from the primitive equation@6#. The fit is very
accurate in the range of moderate Prandtl numbers we
mostly interested in here, but slightly deteriorates at infin
Prandtl number where the critical rotation rate given by
simplified model istc545 instead oftc547.8. Simulations
in the nonlinear regime also provide satisfactory agreem
concerning the pattern formation between simplified a
asymptotic models. Note that a further simplification such
that corresponding to the model of Ref.@14# leads to a sig-
nificant loss of accuracy in the estimate of the critical ro
tion for the Küppers-Lortz instability.

D. Modeling rigid boundaries

It is customary, in the context of Swift-Hohenberg-typ
equations, to model the effect of rigid boundaries by add
a term in the mean flow equation which takes into acco
the friction of the mean flow on the top and bottom plate
Indeed, while with free-slip boundaries the mean flow is
leading order independent of the vertical coordinate, in
case of rigid boundaries it is to a good approximation
Poiseuille-type flow whose stream function can be mode
by C(x,y)sinpz. Projecting Eq.~2.6! on this mode, the op-
erator ] t2PD, when acting on C(x,y), reads
] t2P(Dh1p2), which after normalization leads to replacin
the left-hand side of Eq.~2.59! ~where the subscripth has
been dropped by@] t2P(Dh1n)#Dh , with n5p2/qc

2 . The
valuen52, used in the literature@20#, can be understood i
one keepsqc5p/A2, even in the case of rigid boundaries.
the presence of rotation, the effect of top and bottom ri
boundaries is in fact more subtle, and this led us to derive
a more systematic way, appropriate equations for this ca

Proceeding as in Ref.@13#, we expand the temperature o
the set of functions sin(2pnz) @in order to satisfy the bound
ary conditionsu(0)5u(1)50#, and use the eigenmodes o
the operatord4/dz4, which vanish together with their firs
derivatives onz50 and 1, to expand the vertical velocityw.
To leading order, we takew5w1g(pz), where
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g~z!5

coshl1S z

p
2

1

2D
coshl1/2

2

cosl1S z

p
2

1

2D
cosl1/2

, ~2.70!

with l1'4.730 040 74. Note that ^g(pz)2&
[*0

1g2(pz)dz51. We also projectf andc on g8(pz) and
c0 on sinpz.

In the following, we systematically derive the linear pa
of the generalized Swift-Hohenberg system for rigid boun
aries, and model the nonlinear terms in the spirit of the c
plings obtained with free-slip boundaries. We proceed a
Sec. II assuming the amplitude ofw1 to be of ordere1/2, the
time derivative of order e, with a Rayleigh number
R5(11e)Rc . We also write the horizontal Laplacia
Dh52qc

21L. Since the nonlinear terms in the Boussine
equations arise only at ordere3/2, we restrict ourselves to th
linear terms. Projecting Eq.~2.7! ontog(pz), Eq. ~2.6! onto
g8(pz), and Eq.~2.3! onto sin(pz), we obtain

P21] t~Dh2g1p2!w15~Dh22p2Dhg11p4g4!w11gsDhu1

2ptg1Dhc1 , ~2.71!

] t2P~Dh2g2p2!Dhc152tPpw1 , ~2.72!

] tu12~Dh2p2!u152Rgsw1 , ~2.73!

with g15^g8(pz)2&, g25^g9(pz)2&/^g8(pz)2&,
g45^g(pz)g(4)(pz)&, andgs5^g(pz)sin(pz)&.

Applying the operators (Dh2g2p2)@] t2(Dh2p2)# onto
Eq. ~2.71!, (Dh2g2p2)gsDh onto Eq. ~2.73!, and
P21tpg1(Dh2p2) onto Eq.~2.72!, and summing the result
ing equations, we obtain, at leading order, the critical R
leigh number

Rc5
qp

2~qc
412p2qc

2g11p4g4!

2gs
2qc

2
1

qp
2p2t2g1

2gs
2qc

2qp2
2

, ~2.74!

with qp
25qc

21p2 andqpi
2 5qc

21gip
2, the critical wave num-

ber qc being given by the condition]Rc(qc)/]q50 which
arises at the ordere of the expansion.

At order e3/2, the nonlinear terms are relevant but, as
ready mentioned, they will be specified phenomenologica
The linear part of the equation for the convective mode re

t0] tw15ew12j0L2w1 , ~2.75!

where

t05
1

qp
2F11P21S qp

4qp1
2

2Rcgs
2qc

2
2

qp
4g1p2t2

2Rcgs
2qp2

4 qc
2D G ~2.76!

and

j05
2qp1

2 1qp
2

2Rcgs
2qc

2
2

g1p2t2

2gs
2qc

2Rcqp2
2 S 12

qp
2

qp2
2 D . ~2.77!

In the absence of rotation, we thus ha
t05(110.5143P21)/19.46, to be compared with the valu
t05(110.5117P21)/19.65 obtained using a projection o
three Galerkin modes@21#. Similarly, we obtain for
-
-

in

q

-

-
.
s

j̄ 0
254qc

2j0 ~a quantity usually denotedj0
2 in the literature!

the value 0.151 instead of 0.148. The leading order of
vertical vorticity equation ~2.72! gives c15(p/qc

2)bw1

whereb5t/qp2
2 , and the incompressibility condition implie

f15(p/qc
2)w1. We thus write

V5F p2

qc
2 ~]x1b]y!w1g8~pz!1]yc1sin~pz!

p2

qc
2 ~]y2b]x!w1g8~pz!2]xc1sin~pz!

w1g~pz!

G .

~2.78!

Using Eq. ~2.78! in the next order contribution to the
equation for the vertical vorticity, projecting on the sin(pz)
mode and rescaling the dependent and independent varia
as in the free-slip case, we obtain

@] t2P~D2n!#DC5a0~¹hDW3¹W!1a6@~DW!2

1¹W•¹DW#1a7D~W2!, ~2.79!

where

a054^g82~pz!sin~pz!&
p2

2qc
2 ~12b2!, ~2.80!

a6524^g2~pz!sin~pz!&
bp2

qc
2

, ~2.81!

a752^@g9~pz!g~pz!1g82~pz!#sin~pz!&
bp2

qc
2

,

~2.82!

n5
p2

qc
2

. ~2.83!

It is noticeable that, when compared to its analog in the c
of free-slip boundaries, Eq.~2.79! includes an additiona
term proportional toD(W2) originating from the vertical
Reynolds stress.

Returning to the equation for the vertical velocity, w
model the nonlinear couplings as in the case of free-
boundaries. Neglecting the last two terms on the right-ha
side of Eq.~2.59! which are used to refine the stability anal
sis of straight parallel rolls in the case of free-slip bounda
conditions, we find

t̃ 0] tW5@ ẽ 2~D11!2#W2@WM1a1¹W•¹M1a2¹W

3¹M1a3¹W3¹C#, ~2.84!

with

t̃ 05
t0qc

2

qc
4j0

, ẽ 5
e

qc
4j0

. ~2.85!
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The coefficientsa1, a2, anda3 are prescribed as follows. A
in the case of free-slip boundaries, we takea35g3 t̃ 0, with a
coefficient g3 to be determined. Similarly, we tak
a25g2 t̃ 0, since, in the free-slip case, the variation ofa2
with the rotation rate is almost linear. Finally, we choo
a152g1 t̃ 0 since the corresponding term disappears in
absence of rotation. The coefficientsg1, g2, andg3 are de-
termined in such a way as to recover accurately the Ku¨ppers-
Lortz instability for moderate Prandtl numbers and the z
zag instability boundary in the absence of rotation. The la
constraint is met by comparing the predictions of the ph
equation analysis made in Sec. III@see Eq.~3.19!#, with that
performed on the primitive Boussinesq equations with ri
boundary conditions@22#. Note that an accurate descriptio
of the right-hand boundary of the Busse balloon~skewed-
varicose instability! requires the inclusion of nonvariationa
additional terms@19#. In the neighborhood of the thresho
~whose extension increases with the Prandtl number!, the
present model provides an adequate representation o
long-wavelength instabilities.

In practice, the model has been considered for differ
values of the Prandtl number for which the onset of
Küppers-Lortz instability is computed in Refs.@4# or @5#.
This leads to the numerical values of the coefficientsg1, g2,
andg3 given in Table I.

III. WEAKLY NONLINEAR DYNAMICS

A. Nonlinear development of the small-angle instability

At a finite Prandtl number and moderate rotation, the
velopment of the small-angle instability is visualized
solving the model equations~2.58!–~2.60!, starting with

FIG. 4. Weakly nonlinear dynamics resulting from the sma

angle instability forP52, t510, andẽ 50.1: ~a! convection rolls;
~b! mean flow stream function.

TABLE I. Values of the coefficientsg1, g2, andg3 entering the
model with rigid boundary conditions~see text! for various values
of the Prandtl number, together with characteristics of the KL a
zigzag instabilities.

P uKL tKL ( ẽ zigzag,k zigzag) g1 g2 g3

0.8 38.4° 23.6 (0.232,0.866) 20.010 0.049 04 1.4187
1.2 46° 29.6 (0.232,0.875) 0.0106 0.020 05 2.16
2 50° 38 (0.4708,0.847) 0.0112 0.020 77 2.30
6.8 59.1° 46.2 (0.4754,0.8502) 0.0147 0.007 59 8.8
50 59.7° 54.8 (0.8,0.9778) 0.0120 0.020 02 5.0
` 59.7° 54.8 0.0120 0.021 32 0
e

-
r
e

he

t
e

-

straight parallel rolls of the critical wave number, perturb
by a small isotopic noise. Under the effect of the small-an
instability, the rolls distort and shear layers are formed,
seen in Fig. 4. The reconnection of the rolls leads to a glo
rotation of the pattern in the direction of the external ro
tion. Indeed, the vorticity generated by the last term on
right-hand side of Eq.~2.59! has, preferentially, the sign o
the external rotation. This process is easily seen in Fou
space, where the leading mode rotates on the critical cir

B. Derivation of the phase-mean drift equations

In order to describe the phase modulation of straight p
allel rolls, we proceed as in Ref.@23#, and introduce the slow
variablesXW 5hxW andT5h2t. We also denote the phase var
able byu, the slow phase byQ5h21u, and the local wave
vector byKW 5¹XQ. We are thus led to replace, in the mode
with free slip @Eqs. ~2.58! and ~2.59!# or rigid @Eqs. ~2.84!
and ~2.79!# boundary conditions, the time derivative] t by
h]TQ]u1h2]T , the gradient¹ with respect to XW by
KW ]u1h¹, and the Laplacian¹2 by K2]u

21hD1]u1h2¹2

with D152KW •¹1¹•KW . We expand the solutionS5(C
W) as

S5S01hS11•••5S w01hw11•••

c01z01h~c11z1!1•••

D ,

~3.1!

where the contributions depending on the fast phaseu are
isolated in the quantitiesz i .

At leading order, we have

L0S0[S Ô11 Ô12

Ô21 Ô22
D 50, ~3.2!

where

Ô115@2e1~K2]u
211!2#w01$w0

31w0~]uw0KW !2

1a1@K2]uw0]u~w0
2!1K4]uw0]u~]uw0!2#

1a4~w0K2]u
2c0!1a5~K4]uw0]u

3c0!%, ~3.3!

Ô125a4~w0K2]u
2c0!2a5~K4]uw0]u

3c0!, ~3.4!

Ô215P~2K2]u
21n!]u

2c0 , ~3.5!

Ô2252a6@K4]uw0]u
3w01K4~]u

2w0!2#2a7K2]u
2w0

2 .
~3.6!

Retaining only the first mode in a Galerkin expansion,
write the solution in the form (w05A cosu,c05A2fcos2u),
with f52(a6K222a7)/4P(n14K2) and

A25
ẽ 2~K221!2

3

4
1

K2

4
1

1

2
a1K2~12K2!22K2f~a412K2a5!

.

~3.7!

The evolution ofz0 is determined at the next order of th
expansion.

d
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At order h, the equation takes the form

dL0S15F1 , ~3.8!

wheredL0 is the linearization of the operatorL0 about the
steady solution, andF1 collects the terms of orderh not
involving S1. The solvability conditions are obtained by ta
ing the scalar product̂a,b&5(1/2p)*0

2pab du from the
right-hand side of Eq.~3.8! with the vectors which span th
null space of the adjointdL0

† of the operatorL0, namely,
e15(sinu,gsin2u) where g52A(a412a5K2)/@2P(n
14K2)#, ande25(0,1) . The first solvability condition gives
the phase diffusion equation

t~K !]TQ1g~K !KW 3¹z01a~K !~KW •¹!K2

1b~K !~KW 3¹!K21c~K !¹•KW 50, ~3.9!

with

t~K !5 1
2 t0A224gK2A3f, ~3.10!

g~K !5 1
2 a3A2, ~3.11!

a~K !52A21~12K2!
dA2

d~K2!
1

1

8
A2

dA2

d~K2!

1a1S 1

4
~112K2!A2

dA2

d~K2!
1

3

8
A4D

1a4A2
d~A2f!

d~K2!
1a5F2K2A2

d~A2f!

d~K2!
1A4S f

1K2
df

d~K2!
D G1gF8PA3S f1K2f

dA2

d~K2!

12K2
df

d~K2!
D 12P~n14k2!S A

d~fA2!

d~K2!
D

1a6S K2A
dA2

d~K2!
1

1

4
A3D 22a7A

dA2

d~K2!
G ,

~3.12!

b~K !52a2S 1

2
A2K2

dA2

dK2
1

3

8
A4D 2

1

4
a3A2S 2f

dA2

dK2

1A2
df

dK2D 1ga0S 1

8
A2~K221!

dA2

dK2
2

1

4
A3D ,

~3.13!

c~K !5~12K2!A21 1
2 a4A2f1a5K2A2f

1g@PfA3~n18K2!1 3
4 a6A32a7A3#.

~3.14!

The second solvability condition is always satisfied, and
expansion must thus be pushed to the next order.

At order h2, we have an equation of the form
e

dL0S25F2 , ~3.15!

and the solvability condition coming from the orthogonali
of F2 with e2 gives the mean flow equation

@h2~]T2P¹2!1Pn#¹2z0

5
a0

2
¹3@KW ¹•~KW A2!#1

a6

2
¹•@KW ¹•~KW A2!#1

a7

2
¹2A2,

~3.16!

which, together with Eq.~3.9!, provides the phase-mean dri
system. To study the stability of the straight parallel rolls,
linearize Eqs.~3.9! and~3.16! about the solutionQ5kX and
z050. The system for the perturbationsw andj of the phase
and of the mean flow reads

t~k!]Tw1g~k!]Yj12a~k!k2]XXw12b~k!k2]XYw

1c~k!¹2w50, ~3.17!

@h2~]T2P¹2!1Pn#¹2j

52
a0

2 S kA~k!2]Y¹2w12k3
dA2

d~K2!
~k!]XXYw D

1
a6

2 S kA~k!2]X¹2w12k3
dA2

d~K2!
~k!]XXXw D

1a7k
dA2

d~K2!
~k!]X¹2w. ~3.18!

Considering normal modes proportional toeikW •XW 1sT with
kW 5(k cosr,k sinr), we obtain for the growth rates, a qua-
dratic equation. One of the solutions is always negative. T
other is given by

s

k2
5

1

2t~k!h2 F2t~k!P~h21n!2h2@2a~k!k2cos2r

1b~k!k2sin2r1c~k!#1H $t~k!P~h21n!

1h2@2a~k!k2cos2r1b~k!k2sin2r1c~k!#%2

24t~k!h2g~k!~a0sin2r2a6sinr cosr!kS A~k!2

2

1k2
dA2

d~K2!
~k!cos2r D 24t~k!h2g~k!

3S 2a7sinrcosrk
dA2

d~K2!
~k!D J 1/2G . ~3.19!

In Eq. ~3.19!, a75n50 in the case of free-slip boundar
conditions whilea45a550 for rigid boundary conditions.

C. Relation between the small-angle
and skewed-varicose instabilities

In the absence of rotation and for free-slip boundari
straight parallel rolls with a wave number larger than critic
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were shown to be unstable with respect to the skew
varicose instability@15,16#. This phenomenon is recovere
by computing the stability balloon from Eq.~3.19!. Taking
the critical wave numberqc as unity, the result is illustrated
in Fig. 5 for P52 and h51022. The dependency of the
growth rate of the skewed-varicose instability with the an
r associated to the phase perturbation is presented in
6~a! for rolls of wave numberk51.03 and the same values o
P andh as in Fig. 5. We note that, as usual, the growth r
is symmetric in terms ofr.

When rotation is turned on, we observe that fork.1, the
skewed-varicose instability becomes ‘‘asymmetric,’’ t
growth rate being now maximum for a finite value of th
angler whose sign is that of the rotation@Fig. 6~b!#. Whenk
is smaller than critical, the unstable modes are associate

FIG. 5. Stability balloon relatively to long-wave instabilities
the case of free-slip boundary conditions forP52 andh51022, in
the absence of rotation. Here, e represents the frontier of the
haus instability and sv that of the skewed-varicose instability. F
thermore, N is the neutral curve for convection onset.

FIG. 6. Growth rates/k2 relatively to long wave perturbation
for P52 andh51022: ~a! no rotation and basic rolls with wav
number k51.03, ~b! rotation ratet510 and roll wave number
k51.03 ~in units of qc); and ~c! rotation ratet510 and roll wave
numberk50.99.
d-

e
ig.

e

to

values ofr, whose sign is opposite to that of the extern
rotation @Fig. 6~c!#. In physical space, a phase perturbati
with an angler produces a distortion of the rolls wher
compressed and dilated regions alternate along an axis m
ing the same angle withk. The associated mean flow dis
plays shear layers perpendicular to this axis. According
the angler, the perturbation is amplified or not, as predict
by the phase modulation analysis. Note that the aspect r
of the box required to validate the phase theory increa
with the rotation rate.

It is of interest to compare more precisely the small-an
instability resulting from an amplitude perturbation with th
asymmetric skewed-varicose instability associated with
phase perturbation. By inspection of Eq.~2.44!, it is easily
seen that, in the small-angle boundary layer, the growth
of the amplitude perturbation scales likeu2, whereu is the
angle between the basic and the perturbation wave vec
while Eq. ~3.19! shows that the growth rate of the pha
perturbation~in the primitive variables! scales like the in-
verse aspect ratioh of the box. On the other hand, in such
box, the minimum perturbation angleu is of orderh1/2. It
follows that both growth rates scale like the inverse aspech
and not likeh2, as usual for phase instabilities in the case
no-slip top and bottom boundaries. This larger growth r
results from the strong magnitude of the mean flow.

Furthermore, both instabilities lead to a similar dynam
in physical space, governed by the formation of shear lay
which trigger the reconnection of the rolls and their glob
rotation. Nevertheless, the eigenmodes involved in the
descriptions of what appears to be essentially the same in
bility are different. In the amplitude framework, the pertu
bation consists of a single Fourier mode, which is alwa
unstable if the angle of its wave vector, with that of the ba
rolls, has the sign of the external rotation. In the phase
malism, in contrast, the perturbing modes can be viewed
couple of satellites whose separation scales like the inv
aspect ratioh of the convection cell. In a confined system
the distance between the two satellites is sufficient to m
the associated modes evolve as two independent ampli
perturbations. In contrast, when the aspect ratio of the bo
large enough, the interaction of the two satellites is reson
and a mode which alone would be unstable may be stabil
by the presence of its companion, as predicted by the ph
theory. When the wave number is distinct from critical, t
sign of the rotation can be predicted by noticing that amo
the two satellite modes produced by the phase perturba
the closest to the critical circle will be preferentially amp
fied ~Fig. 7!. For example, for positive rotation andk.qc ,

k-
r-

FIG. 7. Sketch in Fourier space of the couples of mod

e6 i (kW6hkW ).xW associated with the phase instability, fork.qc ~a! and
k,qc ~b!, together with the critical circle~of radiusqc).
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FIG. 8. Time evolution of parallel rolls with wave numberk50.9 for ẽ 50.3, andt510 subject to a phase perturbation: convective mo
~left!, mean flow stream function~middle!, and two-dimensional energy spectrum of the convective mode~right!.
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56 4173PATTERN DYNAMICS IN ROTATING CONVECTION AT . . .
the instability correspond to positiver @see Fig. 6~b!# and the
rotation will be in the negative direction. Similarly, fo
k,qc , modes with negativer are unstable@Fig. 6~c!# and
the rotation also takes place in the negative direction. Afte
while, the mode close to the critical circle becomes domin
and the pattern undergoes a dynamics prescribed by the
plitude theory, possibly leading to the reversal of the rotat
direction ~Fig. 8!.

D. Busse balloons for rigid boundary conditions

We first display in Fig. 9 the stability balloon in the ab
sence of rotation for our model with rigid boundary cond
tions for P50.8 and 6.8. Figure 10 displays the stabili
balloon for both Prandtl numbers in the presence of rotat
They qualitatively agree near threshold with those deriv
from the primitive equations@3#. Since our analysis is lim-
ited to a neighborhood of threshold, we did not include, as
Ref. @19#, corrective terms designed to bend the balloon
higher values ofe. In this context, it is of interest to conside
more precisely the effect of the rotation on the skew
varicose instability, a question addressed experimentall
Ref. @9#. Tables II and III show forP50.8 and ẽ 50.3 and
0.5, corresponding to two essentially constant values of
normalized distancee to convection threshold, that the ang
uSV of the wave-vector perturbation decays linearly as in
experimental results displayed in Fig. 18 of Ref.@9#. The
growth of the critical wave numberkSV ~see Fig. 2 of Ref.
@9#! is, however, underestimated.

Figure 11 displays the stability border relative to lon
wave instabilities in the plane (k,r). The symmetry~for

FIG. 9. Instability balloon for rigid boundary conditions in th
absence of rotation for Prandtl numbersP50.8 ~a! andP56.8 ~b!.
Here e, sv, cr, and zz represent the frontiers of the Eckh
skewed-varicose, cross-roll and zigzag instabilities respectively
is the neutral curve for the onset of convection.

FIG. 10. Instability balloon in the presence of rotation (t520)
for rigid boundary conditions at Prandtl numbersP50.8 and 6.8.
The labels of the long-wave instability boundaries are those of
9, while kl refers to the Ku¨ppers-Lortz instability.
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t50) with respect to the phase perturbation angler, which
holds fort50, is broken in the presence of rotation, as w
free-slip boundary conditions.

IV. NONLINEAR DYNAMICS FOR FREE-SLIP
BOUNDARY CONDITIONS

In order to simulate the fully nonlinear regime, Eq
~2.58!–~2.60! were integrated with resolution ranging from
1282 to 2562 collocation points, according to the number
rolls in the convection cell. The initial conditions consist in
random noise with a spectrum localized in an annulus c
tered around the critical wave-number.

Typical snapshots of patterns emerging in the absenc
rotation are displayed in Figs. 12 and 13. At an infin
Prandtl number, labyrinthic rolls@24# are observed~Fig. 12!,
while the now classical spiral turbulence state is obtained
a Prandtl number of order unity~Fig. 13!.

The Küppers-Lortz instability regime which develops
an infinite Prandtl number and moderate rotation is shown
Fig. 14 for t550 ande50.2. We observe the formation o
patches of parallel rolls of different orientations. As tim
elapses, each patch is gradually replaced by another
whose rolls are rotated by an angle close to 60°, a dynam
similar to that described in Refs.@25# and @21#. The chaotic
dynamics due to the KL instability is essentially governed
the propagation of dislocation arrays separating rando
oriented roll patches whose size is reduced ase is increases.

Qualitatively different patterns are observed at sma
Prandtl numbers. This regime is illustrated in Fig. 15, whi
displays a snapshot ofW andC for P52, t510, and vari-
ous values of the stress parametere. Near the onset
(e50.01), the pattern consists of large patches of sligh
distorted parallel rolls@Fig. 15~a!#, rotating slowly and re-
connecting under the influence of the shear flow associa
to the small-angle instability as discussed in Sec. III B. F
e50.05 @Fig. 15~b!#, we observe after about ten horizont
diffusion timesTh , the emergence from the turbulent bac

s,
N

.

TABLE II. Variation of the critical wave number and of th

angle of the skewed-varicose instability forP50.8 andẽ 50.3.

V5t/2 kSV uSV e

0 1.138 67 46° 0.108
5 1.1402 41.8° 0.109
7 1.1411 40° 0.1097
10 1.143 37° 0.111
15 1.146 96 33.46° 0.1137

TABLE III. Variation of the critical wave number and of the

angle of the skewed-varicose instability forP50.8 andẽ 50.5.

V5t/2 kSV uSV e

0 1.1733 44.91° 0.1805
5 1.1759 40.68° 0.1817
7 1.1776 38.96° 0.1829
10 1.1806 36.66° 0.1851
15 1.1873 32.65° 0.1895
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ground, of a big target associated to a coherent vortex, w
survives for about 13Th and is then destroyed by a larg
scale shear. Note that in presence of rotation, the mean
survives at the center of a perfectly isotropic target, and
the targets rotate in the direction of the external rotation.
e50.2, the target keeps growing by accretion of adjac
rolls until it reaches the size of the computational doma
and then stabilizes@Fig. 15~c!#. For an intermediate value o
e (e50.1), the target does not stabilize, and a cyclic tran
tion between a target and a spiral is observed~Fig. 16!.
When the rotation induces deformations, the innermost
of the target meets its neighbor, and a pair of dislocation
formed. One of them glides inwards, forming a spiral, wh
the other is rapidly convected outwards by the mean flo
producing a whirling line of low amplitude. The target r
forms when a dislocation of the opposite sign reaches
center of the spiral. For largere, the target rotates mor
rigidly, and becomes stable.

When analyzing the influence of the rotation rate, at fix
values of the Prandtl number (P52) and of the stress pa

rameter (ẽ 50.05), we notice that the structures formed
small rotation~e.g.,t54), are similar to those of Fig. 15~a!,
while for larger values oft ~e.g.,t530), the angular range
of unstable modes becoming larger, the formation of coh
ent structures is prevented. More quantitatively, in Fig.
we consider for a Prandtl numberP51.2 and a stress param

eter ẽ 50.7, the time variation of the correlation length

FIG. 11. Stability domain in the absence of rotation~solid line!
and with a rotation ratet520 ~dashed line! in the (k,r) plane of
the wave number and angle of phase perturbation, for the lo

wave instabilities shown in Fig. 10, whenẽ 50.3, h51022, and
P50.8 ~a! or 6.8 ~b!.

FIG. 12. Labyrinthic pattern at an infinite Prandtl number, f

ẽ 50.5 andG532, in the absence of rotation.
h

w
at
r
t
,

i-

ll
is

,

e

d

t

r-
,

z5S E ~k2 k̄ !2uŵ~k!u2d2k

E uŵ~k!u2d2k
D 21/2

, ~4.1!

where

k̄ 5

E kuŵ~k!u2d2k

E uŵ~k!u2d2k

, ~4.2!

We observe on Fig. 17~b! that when targets are formed th
correlation increases and so does the mean flow, as meas
by the squaredL2 norm uc0uL2

of its stream function. The
dynamics is also very sensitive to the Prandtl number. W
the same value of the stress parameterẽ 50.7 and the same
rotation rate (t510) but for a Prandtl numberP510,
straight parallel rolls are obtained when the convection c
has an aspect ratioG516, the small-angle instability being
weak and the KL instability absent.

It is noticeable that the formation of stable targets is n
specific to the case of periodic conditions in the horizon
directions. Such structures are also obtained in simulati
performed in a cylindrical box with no-slip conditions on th
side wall but free-slip top and bottom boundary condition
In this case, the pattern adjusts to the symmetry of the c
tainer, leading to concentric rolls which occupy the who

g- FIG. 13. Convective pattern~left! and mean flow stream func
tion ~right! showing spiral turbulence in the case of free-slip boun
ary conditions, forP51, e50.5, andG532, in the absence o
rotation.

FIG. 14. Snapshots of the roll patch dynamics at an infin

Prandtl number forG532, ẽ 50.2, and a rotation ratet550.
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domain @26#. In contrast, as discuss in Sec. V, a differe
dynamics develop with rigid to and bottom boundary con
tions where the small-angle instability does not exist.

V. NONLINEAR DYNAMICS FOR RIGID
BOUNDARY CONDITIONS

The dynamics developing with rigid top and botto
boundaries and periodic conditions in the horizontal dir
tions is displayed in Fig. 18, for a Prandtl numberP51.2
and a stress parameterẽ 50.7. In the absence of rotatio
@Fig. 18~a!#, we observe the now well-documented spiral tu
bulence@27–34#. The effect of a small rotationt510 @Fig.
18~b!# is to increase the size of the spirals and to force th
rotating motion in the same direction as that of the exter
rotation @35,36#. This last point is illustrated in Fig. 19
which displays the convective field fort5210, 0, and110.
Up to rotation rates comparable to the critical value for

FIG. 15. Convective pattern~left! and mean flow stream func
tion ~right! for free-slip boundary conditions withP52, t510,

G516, and increasing values of the stress parameter:ẽ 50.01 ~a!,

ẽ 50.05 ~b!, and ẽ 50.2 ~c!.
t
-

-

-

ir
l

e

onset of the Ku¨ppers-Lortz instability, we observe a progres
sive ‘‘relaminarization’’ of the flow, characterized by the
gliding and annihilation of dislocations, and leading to a
highly correlated pattern in the form of quasiparallel rolls
@Fig. 18~c!#. In the presence of lateral boundaries, this phe
nomenon is less conspicuous due to the continuing formatio
and annihilation of dislocations on the sidewalls@26#. These
defects were shown to be responsible for the appearance
the Küppers-Lortz instability for rotation rates below the the-
oretical value for its onset@7,8#. A maximum of the correla-
tion length aroundtKL is nevertheless visible in experimental
results for a large aspect ratio cell reported in Fig. 4 of Re
@37#, although the authors do not stress this point. We ob
serve in Fig. 20 that the rotation rate~normalized by the
critical rotationtKL) at which the relaminarization is most

FIG. 16. Transition between a spiral and a target forP52,

t510, G516, ẽ 50.1, and free-slip boundary conditions.

FIG. 17. Time evolution of the correlation lengthz defined by
Eq. ~4.2! ~left! and of theL2 norm of the mean flow stream function

~right! for free-slip boundary conditions, withP51.2, ẽ 50.7, and
rotation ratest50 ~a!, t510 ~b! andt550 ~c!.
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efficient, increases as the Prandtl number is reduced. N
that the quasistraight roll patterns obtained after the rela
narization process, are still subject to the KL instability, b
the value oft being close totKL , the patches have a siz
comparable to that of the container. As a result, the r
rotate globally, keeping a high degree of correlation. In F
21, we display the correlation lengthz and L2 norm of the
stream functionc0 for P51.2, ẽ 50.7, and various rotation
ratest50, 10, and 40. The striking features are~i! the de-
crease of theL2 norm of the mean flow with time~although
not monotonic! and ~ii ! the anticorrelation betweenz and
uC0uL2

, especially visible fort540. The gradual decrease o

uC0uL2
for t50 is consistent with the formation of spira

and targets for which the mean flow is minimum. Althou
the system is not a gradient flow, it evolves as if it we
trying to maximize the heat transport by creating structu
for which the friction of the horizontal flow on the top an
bottom boundaries is minimized. For nonzero rotation ra
the formation of very correlated structures~almost straight
rolls! also corresponds to a minimization of the mean flow
is noticeable that with free-slip boundaries, this tendenc
exactly the opposite. In the latter case, the coherent st
tures formed att510, correspond to targets which maximiz
the mean flow@Fig. 17~b!#. Finally, when the Ku¨ppers-Lortz
instability is efficient, a highly chaotic regime is recover
@Fig. 18~d!#.

We conclude this section by mentioning that a transit
between spiral chaos and a stationary pattern of straight
allel roll was recently observed in convection experime
performed in the absence of rotation in a square cell wit
fluid of Prandtl number one, in a range of parameters

FIG. 18. Convective pattern for rigid boundary conditions, w

P51.2 and ẽ 50.7, andt50 ~a!, t510 ~b!, t540 ~c! andt556
~d!.
te
i-
t

ls
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s
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t
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FIG. 19. Convective pattern~left! and mean flow stream func
tion filtered by the conditionuCu.supuCu/3 ~right! for rigid bound-

ary conditionsP51.2 and ẽ 50.7, andt510 ~a!, t50 ~b! or
t5210 ~c!, showing positive or negative vortex cores according
the sign oft.

FIG. 20. Time average of the correlation lengthz̄ vs the rota-
tion rate t normalized by the critical valuetKL for onset of the
Küppers-Lortz instability, for different Prandtl numbers.



m
y

ide
th
o

, in
and
ts
n-
d,
aos.
re-

tion
ent

mi-

g
id
ion
m
uch

and
se
ar-
ces

a
ons
ch
of
ry
gle

d in

Y-
ial
C

56 4177PATTERN DYNAMICS IN ROTATING CONVECTION AT . . .
which straight parallel rolls are stable in an infinite mediu
@38#. After convection in the system has been initialized b
jump from below onset (e,0) to above onset (e.0), for-
mation of straight parallel rolls was observed near the s
walls, while a random pattern appears in the middle of
cell. If e is not too large, a competition between patches

FIG. 21. Time evolution of the correlation lengthz ~left! and of
the squaredL2-norm of the mean flow stream function~right! for

rigid boundary conditionsP51.2 andẽ 50.7, and different rotation
ratest50 ~a!, t510 ~b!, andt540 ~c!.
ic

,

y

a

-
e
f

spiral chaos and of straight parallel rolls develops, and
some instances, a patch of straight parallel rolls grows
fills the entire cell. This situation contrasts with experimen
in cylindrical boxes where the roll tendency to align perpe
dicularly with the boundaries, results in roll curvature an
under the mean flow effect, leads to a persistent spiral ch
In this context, the question arises whether there exits a
lation between the above transition and the relaminariza
observed in our rotating convection model, the enhancem
of the defect motions due to rotation promoting faster rela
narization.

VI. SUMMARY

A Swift-Hohenberg-type model was derived for rotatin
convection at a finite Prandtl number with free-slip or rig
boundary conditions. Rotation is shown to reduce the frict
coefficient of the mean flow on the rigid top and botto
boundaries, and the nonlinear couplings are adjusted in s
a way as to accurately reproduce both the zigzag
Küppers-Lortz instabilities. Numerical integration in the ca
of a periodic horizontal geometry points out the relamin
ization effect of a moderate rotation which counterbalan
the destabilizing influence of the mean flow. This is mostly
consequence of the enhanced gliding of the dislocati
which, in periodic geometries, can totally annihilate ea
other. With rigid boundaries, this leads to the reformation
straight parallel rolls, while in the case of free-slip bounda
conditions these structures, destabilized by the small-an
instability, evolve toward large coherent targets embedde
small-scale turbulence.
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