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Pattern dynamics in rotating convection at finite Prandtl number
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A Swift-Hohenberg-type model is derived for rotating convection in a Boussinesq fluid at a moderate
Prandtl number, for both free-slip and rigid top and bottom boundary conditions. In the former case, a phase
dynamics analysis is used to relate the skewed-varicose instability, which can occur in the absence of rotation,
and the small-angle instability which develops for arbitrary rotation rate and leads to a continuous rotation of
the rolls. Numerical simulations show the ordering effect of a moderate rotation which counterbalances the
destructuring effect of the mean flow. In the free-slip case, this effect induces the formation of coherent targets,
associated with large vortices of the same sign as the external rotation. In the no-slip case, this leads to a
maximum correlation of the patterns for a rotation rate of the order of the critical value for the onset of the
Kuppers-Lortz instability[ S1063-651%97)12509-0

PACS numbds): 47.27.Te, 47.20.Lz, 47.52j, 47.54+r

[. INTRODUCTION a model given in Ref.14] in the case of rigid boundaries, by
the inclusion of additional couplings, and by a better pre-

In addition to its relevance in the context of astrophysicalscription of the coefficients, resulting in more accurate val-
and geophysical fluid dynamics, rotating convection providesies for the KL instability threshold.

a prototype to study the transition to spatiotemporal chaos The phase dynamics is analyzed in Sec. lll where, in the
[1]. The reason is that, close to onset, a chaotic dynamics cat@se of free-slip boundaries, particular attention is paid to the
result from the destabilization of the basic patterns throughelation between the small-angle instability and the skewed
the Kippers-Lortz(KL) instability [2—5]. It turns out that, at ~ varicose instability which can arise in the absence of rotation
a finite Prandtl number, special dynamical features can ad15,16. In the fully nonlinear regime, a main conclusion
pear. With free-slip boundaries, due to the presence of agoncerns the relaminarization which takes place for rotation
intense mean flow, straight parallel rolls have been shown téates comparable to the critical rotation for the onset of the
be linearly unstable relative to a small-angle instability for Kuppers-Lortz instability. In the case of free-slip boundaries
any value of the rotation ratg6]. With rigid boundaries, (Sec. IV), this effect leads to the formation of coherent tar-
experiments in cylindrical boxes have also revealed that th@ets and vortices. With rigid boundari¢Sec. V), disloca-

KL instability can arise below the critical rotation, a phe- tions can totally annihilate each other, and lead to the stabi-
nomenon attributed to the influence of sidewall def¢¢tg].  lization of straight parallel rolls. Section VI briefly

A recent thorough experimental study of convective pattern§ummarizes the main results.

with moderate rotatiofi9] demonstrated the richness of the
system, and pointed out a number of still unresolved ques-
tions that deserve theoretical and numerical investigation.

Several models in the spirit of the Swift-Hohenberg equa-A. An asymptotic model near threshold for free-slip boundaries
tion have been built in the limit of the infinite Prandtl num-
ber [10-12. In this regime, the main observation is that
when the Taylor numbera exceeds the critical value for the
Kuppers-Lortz instability, the destabilization of straight par-
allel rolls (which arises as soon as the Rayleigh numiRer
exceeds the convection threshélg), leads to the formation
of patches of straight rolls penetrating each other in a chaotic
way: rolls disappear and are replaced by other rolls tilted by
an angle close to 60°.

The aim of the present paper is to address the problem of V-V=0, (2.2
rotating convection at a moderate Prandtl number, taken
larger than the critical value (0.677 in the case of free-slip
boundary conditions above which overstability is not pos-
sible and the convective instability leaffsear onsetto the
formation of steady straight parallel rol[43]. In Sec. Il, a
model is derived in the context of both rigid and free-slip topwhere the vertical diffusion time is taken as time unit. The
and bottom boundary conditions, whose strong influence owther parameters are the Rayleigh numReand the square
the mean flow significantly affects the dynamics. In horizon-root 7 of the Taylor number(twice the Rossby numbger
tal directions, the flow is assumed to be periodic. It improvesvhich, to be specific, is taken to be positive.

Il. A MODEL FOR ROTATING CONVECTION

The Boussinesq equations in a horizontal fluid layer

heated from below and rotating around a vertical axire
written in the nondimensional form

AV+20—VI —7zxV=P~YV-VV+4V), (2.0

A6+Rz-V=V-Vo+ 4,6, 2.3
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It is convenient to rewrite the velocity fieM = (u,w) in dc- When acting on a field locally periodic in the horizontal
terms of a potentialp and a stream functiog, in the form  variables, the Laplacian operatay, thus reduces, to leading
order, to the multiplication by- qﬁ. The horizontal gradient

u=(u,v)=(Vhd—exVph), (24 v, is of order one in the direction across the roll and of order
B €'*in the direction along the roll. Since the direction of the
Apdp=— 3w, (2.9 structure is not specified;, must in general be considered of

order unity. However, when acting on slowly varying quan-
tities, V}, will be of ordere* andA, of ordere’?, as used in
Ref. [17]. We thus write Agw;=(—qz+L)w;y with
L£=0(€eY. In this approach which combines anand a
Galerkin expansion in the vertical direction, it turns out that
(= PA)Apy=— TPIW+ dy(V - Vv) =3, (V- Vu), subdominant terms are possibly retained at each order of
(2.6) approximation.
At order €2, the linear analysis is recovered. Defining
P Yo Aw+ Q) =A’W+Ap0+7d,Any, (27 gi=qi+ 72 we have

where the subscrigt refers to the horizontal directions. Ap-
plying successively the operators curl and €or Eq.(2.1),
and projecting the resulting equations on the vertical axis, w
obtain

with — oWy + Rgow; — T ?w, =0, (2.1

Applying the operatorsd;—A) to Eq.(2.7), A}, to EqQ.(2.3),
and— 7P~ 14, to Eq.(2.6), and summing the resulting equa-
tions, we obtain Q2= W, (2.20

—P 12 AW+(1+P Y 9A%W+ Q,

950:=Rewy, (2.19

At order e, when projecting on the first Galerkin mode, we
=A%W—RA W+ 2a,w—r(1-P 1,044, (29 have

where 30pLw; —R.Lw;=0. (2.2))
Q=P Y A=) 01— An(V-VO)+ 7P~ 10 0,(V-Vv) At order €2, using Eq.(2.18), from Eq.(2.7) we obtain
—a,(V-Vu)]. (2.10 1 2772
’ 30507 1+ 5| 1~ —— | |dw1=(etZRo— 3037w, — Q.
As already mentioned, we assume that the Prandtl number Rede
exceeds the minimum valuB*~0.677 for which, in the (222

case of free-slip boundary conditions, the convective insta-l-he nonlinear termQ stands for the:32 contribution arising

bility first sets in as stationary convection, and define thefrom the quantityQ, defined in Eq.(2.10, when projected
stress parametee=(R—R.)/R. where R is the critical o gjnz, After straightforward algebra, we obtain
Rayleigh number. Denoting the critical wave numberdgy
we have[13]

1
Q=P Y Ap—7?)Ay| (Up Viwq) + 5 (U VaWo—Ug- Vawy)

R.=[ 27+ (m?+02)°%]/q?, (2.11)
o
with g, given by —5(Wawy) + 7P (Ay—72)Vy- — 1€,- Vi
208+ 372qe=n+ w272, (2.12 1
] ] X | (ug- Vhug+ ug- Vauy) +=(uq- Vius+ us- Viuy)
Near threshold, we perform the Galerkin expansion vonTon T 2( R
_ ; ; T 1
W=W;Sinmz+w,sin27z+ - - -, (2.13 _E(W2u1+ 2w, Uy) —Ah{3Q§U0'VhW1+§(U1'Vh02
¢= ¢p,c0STz+ 0827z + - - -, (2.19 3
2 T 2
- . - +— 2.2
= o+ Y1COSTZ+ h,C0S27Z+ - - -, (2.15 3dpUz Vawa) (Trwlﬁz 2 qulwzﬂ (223
0= 6,sinmz+ 0,5iN27z+ - - -, (2.1  Where, writing3=7/q3, we defined
wherew,, ¢, ¥, 1, andd, are of ordere™’?, while w,, ¢,, [ 9o 05
,, and @, are of ordere. Furthermore, time derivatives are Uo= —dgibo)’ (224
assumed to be of order. The horizontal structure is left
unspecified, in order to preserve isotropy. We nevertheless 7 [ GWa+ By
assume that the pattern can locally be viewed as a superpo- u;= —2< ) (2.29
sition of slowly modulated rolls with critical wave number qc\ FyW1— BdxWy
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5x¢2+‘9y¢2) W, M

= 2.2

H (6y¢z—&xwz’ (229 D| ¥ |=F N, (2.37)
05 H

and neglected terms involving derivatives of the slowly vary-

ing field u,,. ith ; Egs.(2.23—(2.2
Similarly, the contribution of ordee to the projection of \évgsgggfngg Igj.r(th.er?no(re. 6 and M, N and by

Eq. (2.7) on sin27z reads

Ap—47?)? —2m7A A
(Ap—472) %W+ A Oy— 27 7A iy (An=4m) e h
D= 27T _(Ah_4772)Ah 0 ,
qam m 278 R 0 (Ap—4m2)
ApM+ N~— M, (2.2 c h
“2pgt ™ g 43 Pq4ﬁ (229 (2.39
where m0p?Ap B 2%
2Pq* Pq.* Pa.*
M=(Vwp)2+q2w?, (2.28 e e e
P BmA, (1—BH)w? 2872 (2.39
N=[Vr(Apw1) X VWi ] -€;, (2.29 | 2Pat  2Pgt Pot [T
3 2
H= dy,\W1dyyW1 — ((9XyW1)2. (2.30 777- q_p2 0 0
Jc
From Egs.(2.3) and(2.6), we have, at this order,
and we define the parameters
2 ™y
(An—A4m )02+RCW2=7¥M, (2.31) 1 . . 1(1 272
c g=——, &= , To=—| 1+ =
deR: o2 gl Pl Rl
2 (2.40
2 B %
(Ap=47) Anhy— 27 TWo=—— ApM— 4(1 BIN
Pd; 2Pq B. Linear stability analysis
2B7? In order to validate the model derived in Sec. Il A, it is of
T g H. (2.32  interest to compare its predictions relatively to thepiars-
Ge Lortz instability, with the results derived from the primitive

. . . , Boussinesq equatiori§].
Finally, the equation for the mean flow is also derived from |, the context of Eqs(2.34—(2.35), straight parallel rolls
Eqg. (2.6) in the form
with critical wave numbetk1| qc are given to leading or-

der by w;=aek1*+c.c. and yo= (rm?I8q5 P)a2e?ikix

2 2
(8,— PAh)Aht//o=l4(l—,82)/\/'— 'B—Z[(Anwl)z +c.c, with an  ampliude a= 61/2(1/2qp[1
29, dc —(7 wzquR P2)1)~ 2. We consider an infinitesimal pertur-

+V W Vi Apwy]. (2.33 bation of this steady solution given to leading order by

W= iky-x

Note that the term involving the time derivative is smaller by w=b(hetz"+c.c., (.49
a factore? than the other terms. It must nevertheless be kept i P, P,
when dealing with the large-scale, long-time dynamics. This P=hy(t)e'ki k) Xt hy(telitkd Xt o, (242
term is particularly necessary for a uniform description of the

instability growth rate of straight parallel rolls perturbed by where the wave vectdk, has the same modulus &g and
other rolls turned by an arbitrary andlé]. We finally obtain  makes an angle with the latter. Introducing the variables
the set of equations z;=ah} and z,=a*h,, and neglecting higher-order har-

- monics, we obtain the linear system
TodW1=[ €= &o(Ap+d5) w1 — g0, (2.34

I [ €G(6) v1(6) v2(6)
b b
(9 PAhmhwo——(l BN [ (Apw;)? _ag?psire!
24" a2’ ol z|=| P 4qcPsm22 0 2
+Viwy-ViApwy ], 2.3 z 6Lz
hWi- VhApwy] (2.3 2 ep 0 —4q§Pco§§ 2

Appp=—27W,, (2.36 " (243
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the present model directly exhibits the “small-angle instabil-

ity” derived in Ref.[6] from the primitive equations using

matched asymptotic expansions. The effect on the nonlinear

0.5 0 dynamics of this instability which results from the presence
of an intense mean flow at sma#l and which exists for

o 05 \ arbitrary small rotation is discussed in Sec. IV.

6 (@)

P=2 =10 £=0.08 C. A simplified model
(0] The model considered in Sec. Il B correctly reproduces
0.3 (b) the destabilization of convective rolls in rotating convection,

but is relatively cumbersome. It is thus desirable to simplify

0.2 ; o . ; e .
it heuristically, in a way which preserves quantitatively its
0.1 most prominent features. In this section, we also extend the
I 0 model to the case of no-slip top and bottom boundaries. In
0.5 1 \\ the latter case, we systematically derive all the linear terms
01 and also the nonlinear terms entering the mean flow equa-
P=10 ©=40e=001 tion, but resort to modeling the nonlinear couplings arising in
the equation for the convective mode

0 Assuming that the fieldv can be viewed as a superposi-
\ tion of straight rolls with different wave vectors, the nonlin-
ear term\/ vanishes and, M =4%H. This leads to replacing
Egs.(2.37—(2.40 by

0.5 1

()

2.5 P
P=infinity t=47.8 €=01 3
Y (Ah—4772)2W2—47TI’0Ah1,02+Ah02=§TAh,/\/l,
FIG. 1. Growth rate of the small-angle and pfaers-Lortz insta- qcP

bilities obtained from the complete mod&.34—(2.40 (dashed (2.4
line) and from the primitive Boussinesq equatidisslid line), for

different values of the Prandtl numbé&, of the Taylor number

Ta=72 and of the stress parameterin the case of free-slip bound- 47t oWy — (Ap—47%) A, =0, (2.49
ary conditions.

37
wherep= (r7%/q3q2)|al?. The precise form of the functions Row,+ (Ap—47%) 02=5 —qEM. (2.47)
~ _ q
G, vy, andv, was computed USINJIATHEMATICA software ¢

for symbolic calculations. Applying the operators{,—4m?) to Eq. (2.45, —4mroA

. ltng;? I|m|t of mﬂ;utle Prandt ngmbﬁr, tr:ﬁ Iﬁp(tar?-Lortzt to Eq. (2.46 and —Ay, to Eq. (2.47), and combining the
instability is accurately recovered: when the rotation rate o 1ting equations, we obtain

exceeds the critical value 47.8, two-dimensional rolls be-
come unstable for perturbations, making an angl Av— 4723 — (Amr)2—R.ALTW
0.~58.11° with the basic rolls. More generally, at a finit«ﬁ( n— AT (4To) cAnlWz
Prandtl number, the growth rate obeys 3 ¢? 3
= — ST AM+ 5 = (A= 47 ApM. (2.48
2 qc 2qCP

_ 3 ~ _ 27, 2 2pR
o +[€G(0) = 4Pg:]o"+[4€q:PG(6) The action of the horizontal Laplaciayy, on straight rolls
reduces to multiplication by- qg. For rotations sufficiently

 AD2nbei = 2 4 slow to keepqg. small enough compared ton2 we replace
4P*qcsirt 0o+ €| G(6)4P%gcsin’ 0 (A,—47?%) by —472, an approximation also used in Ref.
[17]. Note that, although often neglected, nonlocal effects
0 P may in some instance be relevant, as stressed in[R&jf.
+4pP | v 0)co§§+v2( a)sinziﬂ=0. (2.44) Performing this localization as a first step, E¢&.45—
(2.47 become
Figure 1 displays, for various values of the Prandtl number, 3 q2 A2
nd various rotation rates and distances from threshold, the _ 2)3 2 wWo= — | — 2P -
. 0
a ' [(A7°)°+(47rg)Twy=—1 5| 1+ ——= | |[ApM
growth rate of the unstable mode as obtained from the above 2 g2 P

model(solid line), and as derived in Ref6] from the primi- (2.49
tive equationgdashed lings An excellent agreement is ob-
tained throughout the range of perturbation angles. Note thand
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Wo=TNARM, (2.50
bo=—2m\M, (2.50)
0,=— kM, (2.52
W= —ToAM, (2.53
with
2 1+ 42_772 2
)\qu_g 2\3 %" 21 KT 3qp2' (2.54
O [(47°)°+(4mro)7] 870

Rescaling the spatial variables loy, the time byqﬁ,
defining W=w(gmkqi/qeéo)t? and W= yqq2(gmrasl
deéo), and dropping the subscriptin the horizontal deriva-
tives, we obtain

(VWX V\If)-i and two additional terms,WAW¥ and
VW-VAW¥, which appear to be necessary in order to repro-
duce the Kppers-Lortz instability growth rate accurately.
We also remove the outer Laplacian which does not affect
the Kippers-Lortz stability. The effect of this operator is,
however, significant far enough from onset where it contrib-
utes to distort the Busse balloon in a way similar to the
nonvariational terms added by Cross and Greengidg.
The equation for the mean flow is kept unchanged. We fi-
nally obtain the simplified system

TodW=[€e—(A+1)JW-A{(W,¥),  (2.58
(9= PA)AWY = ag( VAWX VW) -
+ ag[ (AW)2+VW-VAW], (2.59

whereN, is now given by

- I 2
TodW=[e—(ATDFIW=MW M), 255 -0 h) W a g VW VA an(TWX VA -2
2 2 -
20q; dp (2.60
T’ In this system
— <5 [(AW)?+ VW VAW], (2.56 ystem,
Apdc
_ ~ 1 27272
where 7= (1+ (1/P)[1— (27%7?IR.93)]), € =€l qzéo, and To_1+5( 1- 5 ) (2.6
M=W2+(VW)2. Redc
The nonlinear couplingV;, resulting from the localiza-
tion of Eq.(2.23, is a complicated expression which, in the _ €
infinite Prandtl number limit, reduces to €=— (2.62
cho
N =—A| WM+ aWAM—(3—2a)Vw- VM ,
a
, @ F(l—ﬂz), (2.63
+ 2 8(TWXVM) 2 (2.5 %

with  a=6q%/[(472)%+(277)?] and o=(Ug)[1 @3=87o, (264
+(60505/[(47)%+ (2w7)?D]. In this limit, the model is
similar to that of Refs[10] and[11]. In particular, the coef- 8
ficient & identifies with that arising in E(75) of Ref.[10], =" p 2P (2.69
and the growth rate of the Kapers-Lortz instability is iden- Ye
tical in both models. When the Prandtl number is decreased,
this growth rate deviates significantly from that obtained 16
with the primitive Boussinesq equations. The localization as=3p 5P (2.69
procedure thus appears to be inadequate for rotating convec- e
tion at a small Prandtl number, and we resort to heuristically
modifying the nonlinear couplings resulting from the local- 2
ization in a way which both simplifies their expressions and ag=——p, (2.67
improves the description of the “gpers-Lortz and small- e

angle instabilities. For this purpose, we select a few repre-
sentative nonlinear terms originating from|, retaining

with B= r/qg. The values ofxg, a3, and ag result directly

(with modified coefficientsthe terms present at the infinite from the localization procedure. In contrast, the coefficients

Prandtl number, except the term proportional¥d M since

a, and a,, are prescribed by fitting with the asymptotic

its contribution in the linear analysis is similar to that origi- model derived in Sec. Il A. Indeed, a stability analysis simi-

nating from Vw-VM. Among the terms involving the

stream function ¥, we retain the advection term present context

lar to that leading to Eqs(2.42 and (2.43, gives, in the
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FIG. 2. Variation with the rotation rate of the coefficients
and a, entering Eq.(2.60 of the simplified model for free-slip

boundary conditions and different values of the Prandtl number.

[“eg(6) v1(6) v2(6)
b _ 0 b
— APSiR— 0
ol 2| = €p 4Psm22 2|,
z — oLz
? €p 0 —4Pco§§ 2
i " (2.68
with
1 8+ 4a;Sirf0—2a,sin26
g(0)=~— 1-
To Qg
4+ P(4ay+8as)
c
1__
0.5 1 1.5e
41t

P=2 1=10 £=0.1

(o)
0.3
0.1
05 J 1.5 0
== RN
0.1 N
P=10 t=40 €=0.01
(e}
0405 1 15 4

P =infinity £=0.1

1=47.8

FIG. 3. Growth rates of the small-angle andgfers-Lortz in-
stabilities obtained from the primitive equatiofdashed ling and
the simplified model2.58—(2.60 (solid line) for different values
of P, 7, ande in the case of free-slip boundary conditions.

4167
1 ) .0 .0
v1(0)= =| agsind+4a,sirt = +8assin’=|,
= 2 2
1 ) 0 6
vo(0)==— —a3SIn0+4a4CO§§+8a5CO§§ :
7o
1]
pP=——, (2.69
6

The coefficientsy; and a, are prescribed by minimizing
|G(6)—g(6)|? by a mean-square method. The variation of
the resulting coefficients with the rotation rate is illustrated
for various Prandtl numbers in Fig. 2.

In order to test the validity of the above determination, in
Fig. 3 we compare the growth rate obtained in Sec. Il B with
that resulting from the primitive equatigB]. The fit is very
accurate in the range of moderate Prandtl numbers we are
mostly interested in here, but slightly deteriorates at infinite
Prandtl number where the critical rotation rate given by the
simplified model ist,=45 instead ofr,=47.8. Simulations
in the nonlinear regime also provide satisfactory agreement
concerning the pattern formation between simplified and
asymptotic models. Note that a further simplification such as
that corresponding to the model of Rgt4] leads to a sig-
nificant loss of accuracy in the estimate of the critical rota-
tion for the Kippers-Lortz instability.

D. Modeling rigid boundaries

It is customary, in the context of Swift-Hohenberg-type
equations, to model the effect of rigid boundaries by adding
a term in the mean flow equation which takes into account
the friction of the mean flow on the top and bottom plates.
Indeed, while with free-slip boundaries the mean flow is to
leading order independent of the vertical coordinate, in the
case of rigid boundaries it is to a good approximation a
Poiseuille-type flow whose stream function can be modeled
by ¥ (x,y)sinmz. Projecting Eq{(2.6) on this mode, the op-
erator J,—PA, when acting on WY(xy), reads
d,— P(An+ ), which after normalization leads to replacing
the left-hand side of Eq(2.59 (where the subscriph has
been dropped byd,—P(AL+ v)]A}, with v=772/q§. The
value v=2, used in the literaturg20], can be understood if
one keeps|.= 7/+/2, even in the case of rigid boundaries. In
the presence of rotation, the effect of top and bottom rigid
boundaries is in fact more subtle, and this led us to derive, in
a more systematic way, appropriate equations for this case.

Proceeding as in Ref13], we expand the temperature on
the set of functions sing2) [in order to satisfy the bound-
ary conditionsf(0)= §(1)=0], and use the eigenmodes of
the operatord?/dz*, which vanish together with their first
derivatives orz=0 and 1, to expand the vertical velocity
To leading order, we taker=w;g(7z), where
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z 1 z 1 £2=4q2¢, (a quantity usually denoteg? in the literature
cosh,| ——5] cosu|——5 the value 0.151 instead of 0.148. The leading order of the
9(2)= coshy2 | cosg2z (270 vertical vorticity equation(2.72 gives ¢;=(m/q?)Bw;

whereg= r/qu, and the incompressibility condition implies
with ~ A\;~4.73004074. Note that (g(m2)?)  ¢i=(m/g®)w;. We thus write
=[1g%(mz)dz=1. We also project and¢ ong’(7z) and

o ON sinmz. [ 2 . ]
In the following, we systematically derive the linear part — (9x+ Bdy)W19 (7Z) + dy iy SiN( 72)
of the generalized Swift-Hohenberg system for rigid bound- e
aries, and model the nonlinear terms in the spirit of the cou- V=| 72
plings obtained with free-slip boundaries. We proceed as in — (dy= BIx)W19’ (72) — Ity SiN(7Z)
Sec. Il assuming the amplitude wf, to be of ordere'’? the e
time derivative of ordere, with a Rayleigh number L w,g(72) ]
R=(1+¢€)R.. We also write the horizontal Laplacian (2.78

A= —q§+ L. Since the nonlinear terms in the Boussinesq

equations arise only at orde?’2 we restrict ourselves to the ~ Using Eq.(2.78 in the next order contribution to the

linear terms. Projecting Eq2.7) ontog(z), Eq. (2.6) onto equation for the vertical vorticity, projecting on the sia)
g'(7z), and Eq.(2.3 onto sinfrz), we obtain mode and rescaling the dependent and independent variables

as in the free-slip case, we obtain
P10 Ap—g1m°)Wy = (Ap—2m°Angy + 7gs) W1 + gsAp by

— 7791 An¢, (2.7

d—P(An—gom) A= — TPW, (2.72

[9;— P(A—v)]JAY = ag( VR AWX VW) + ag (AW)?
+VW-VAW]+ a7A(W?), (2.79

where
301~ (Ap— m?) 6= 2RggW1, (2.73
2
1 ! n ! ! H m
with 9:=(9'(72)?), 9.=(9"(72)*)/(9' (72)?), ao=4g'X(m2)sin(72))—(1-p%),  (2.80
94=(9(72)g"(m2)), andg=(g(m2)sin(m2)). 24c
Applying the operatorsX,— g,72)[d;— (A,,— 2)] onto
Eq. (27D, (A,—g,7)gA, onto Eq. (2.73, and _ Br?
P~1r7g.(A,— 7°) onto EqQ.(2.72, and summing the result- ag=—4(g*(m2)sin(m2))—-, (2.8
ing equations, we obtain, at leading order, the critical Ray- 9e
leigh number )
a
2, 4 2 2 4 2 2 a-=—{[g"(7z)g(7z)+ g’ %(7z)]sin 7z))——,
_gact2m <240£231+7T 94) %7 jgl, (27 7= ~([g"(m2)g(m2) + g"(m2) Jsin(72)) @
ngqc ngchpZ (2'82)
with g3 = g2+ 72 andq; =03 + g7, the critical wave num- 2
ber q. being given by the conditio@R.(q.)/dq=0 which v=—. (2.83
arises at the ordet of the expansion. e

At order €22, the nonlinear terms are relevant but, as al-
ready mentioned, they will be specified phenomenologically
The linear part of the equation for the convective mode read

It is noticeable that, when compared to its analog in the case
of free-slip boundaries, Eq2.79 includes an additional
erm proportional toA(W?) originating from the vertical
TodyWq= €W, — EoL2W, (2.759  Reynolds stress.
Returning to the equation for the vertical velocity, we
where model the nonlinear couplings as in the case of free-slip
boundaries. Neglecting the last two terms on the right-hand
Uedo;  Opga T ) l 278 side of Eq.(2.59 which are used to refine the stability analy-

1
-1
1+pP ( - sis of straight parallel rolls in the case of free-slip boundary

To= 5 2 2 2 4 2
9 2R050:  2Re05Gp2e conditions, we find

and = _
TodW=[e—(A+1)>]W—[WM+ a; VW- VM + a, VW

2 2 2 2
:qultqu— 921727 T . /1_&)_ 2.77 XV M+ azVWX V], (2.84
2R.g202  20292Ra%,\ O

0

with
In the absence of rotation, we thus have
70=(1+0.5143"1)/19.46, to be compared with the value 7002 €
70=(1+0.5117P 1)/19.65 obtained using a projection on To=— ¢ €= ot
three Galerkin modes[21]. Similarly, we obtain for acéo dcéo

(2.89
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TABLE I. Values of the coefficienty,, v,, andy; entering the  straight parallel rolls of the critical wave number, perturbed
model with rigid boundary conditionisee text for various values by a small isotopic noise. Under the effect of the small-angle
of the Prandtl number, together with characteristics of the KL andnstability, the rolls distort and shear layers are formed, as

zigzag instabilities. seen in Fig. 4. The reconnection of the rolls leads to a global
— rotation of the pattern in the direction of the external rota-
P Ok 7 (€igragKirigag 71 Y2 Y3 tion. Indeed, the vorticity generated by the last term on the

right-hand side of Eq(2.59 has, preferentially, the sign of
the external rotation. This process is easily seen in Fourier
space, where the leading mode rotates on the critical circle.

0.8 38.4° 23.6 (0.232,0.866) —0.010 0.04904 1.4187
1.2 46° 29.6 (0.232,0.875) 0.0106 0.02005 2.1644
2 50° 38 (0.4708,0.847) 0.0112 0.02077 2.3076
6.8 59.1° 46.2 (0.4754,0.8502) 0.0147 0.00759 8.809
50 59.7° 54.8 (0.8,0.9778) 0.0120 0.02002 5.0
© 59.7° 54.8 0.0120 0.02132 0 In order to describe the phase modulation of straight par-
allel rolls, we proceed as in R¢R3], and introduce the slow
variablesX= 7x andT= 7%. We also denote the phase vari-
The coefficientsy,, a,, anda; are prescribed as follows. As able by ¢, the slow phase b = 716, and the local wave

in the case of free-slip boundaries, we takg=y3 7o, witha  vector byK = V,®. We are thus led to replace, in the models
coefficient y; to be determined. Similarly, we take with free slip[Egs.(2.58 and(2.59] or rigid [Egs. (2.84
a,=7v,70, Since, in the free-slip case, the variation ®f  and (2.79] boundary conditions, the time derivativig by
with the rotation rate is almost linear. Finally, we choosed;®d,+ %dr, the gradientV with respect toX by
a,=— 7y, 7o Since the corresponding term disappears in thek9,+ 7V, and the LaplaciaV? by K295+ 7D 135+ 7°V?
absence of rotation. The coefficienys, y,, andy; are de-  \with DlZZK_VJFV_ K. We expand the solutio§= (vwv) as
termined in such a way as to recover accurately thppgéus-

Lortz instability for moderate Prandtl numbers and the zig-

zag instability boundary in the absence of rotation. The latter ~S=Sp+ 781+ = ,
constraint is met by comparing the predictions of the phase (3.1)
equation analysis made in Sec. [§ee Eq(3.19], with that '
performed on the primitive Boussinesq equations with rigidyhere the contributions depending on the fast phasee
boundary condition$22]. Note that an accurate description jsolated in the quantities; .

of the right-hand boundary of the Busse ballo@kewed- At leading order, we have

varicose instability requires the inclusion of nonvariational

B. Derivation of the phase-mean drift equations

Wo+ Wy + - - -
ot ot (P +i)+- -

additional termd19]. In the neighborhood of the threshold 0, Oy,
(whose extension increases with the Prandtl numbibe LoSo=| . . | =0, (3.2
present model provides an adequate representation of the Oz Oy

long-wavelength instabilities.
In practice, the model has been considered for differentVhere
values of the Prandtl number for which the onset of the N 52 ) 3 "
Klippers-Lortz instability is computed in Reff4] or [5]. Op1=[ — e+ (K 95+ 1) Jwo+{wg+Wo(dyWoK)
This leads to the numerical values of the coefficieptsy,, 2 2 a 2
and y; given in Table I. a[K=0,Wody(Wo) +K9Wod(gWo)"]
+ ag(WoK?d50) + as(K*dwWodgo)t, (3.3
Ill. WEAKLY NONLINEAR DYNAMICS ) 5
A 2 _ 4
A. Nonlinear development of the small-angle instability O12= aa(WoK Fytho) = as(KgWodytho), @4
At a finite Prandtl number and moderate rotation, the de- 0= P(— K252+ v) #2ihy, (3.5
velopment of the small-angle instability is visualized by

solving the model equation§2.58—(2.60, starting with A
g q $2 8 ( Q g 022=—aG[K4&9W0&§WO+K4(¢9§W0)2]—a7K2&20WS.

(3.6

ALV, Retaining only the first mode in a Galerkin expansion, we
r SRR write the solution in the formyo=A cosd,yy=A%¢pcos),
Gl e it with ¢=—(agK?—2a-)/4P(v+4K?) and

R -
Lrsr ., PR Y E_(K2_1)2

SRS 2_
G G A=z

‘. 1 '
VAR el C o+ ZaK2(1—K2)— 2K2( ay+ 2K 2as)

[t % : 17 4 4 2
. . . (3.7
FIG. 4. Weakly nonlinear dynamics resulting from the small-
angle instability forP=2, 7=10, ande =0.1: (a) convection rolls;  The evolution of{, is determined at the next order of the
(b) mean flow stream function. expansion.
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At order 7, the equation takes the form SLoS,=F>, (3.15

6LyS =F1, (3.8  and the solvability condition coming from the orthogonality

of F, with e, gives the mean flow equation
where 6L, is the linearization of the operatdl, about the

steady solution, andF; collects the terms of ordey; not [7*(97=PV3)+Pv]V?,

involving S;. The solvability conditions are obtained by tak- @ . g - . ay

ing the scalar producta,b)=(1/27)f3"ab dé from the =7V><[KV-(KA2)]+ 7V-[KV'(KA2)]+ 7V2A2,
right-hand side of Eq(3.8) with the vectors which span the

null space of the adjoinb. of the operatorZ,, namely, (3.16

91:(2'”‘90’5'”2‘9) where  y= _A(O‘fﬁzaus_)_/[ZP(_V which, together with Eq(3.9), provides the phase-mean drift

+4K?)], ande,=(0,1) . The first solvability condition gives  system. To study the stability of the straight parallel rolls, we

the phase diffusion equation linearize Eqs(3.9) and(3.16 about the solutio® =kX and
{o=0. The system for the perturbatiopsand¢ of the phase

7(K) 310 +g(K)KX Vo +a(K) (K- V)K? and of the mean flow reads
+b(K)(KXV)K2+¢c(K)V-K=0, (3.9 7(K) 1o+ g(K) dy &+ 2a(K) k2dyxe+ 2b(K) K2y ye
with +c(k)V2p=0, (3.17
7(K)= 1 70AZ— 4yK2A3 g, 310 [#*(9r—PV*)+Pr]V%
2
g(K) =3 asA? (313 2 A 020 %0+ 2k (g
5| KAK)Zoy Vo d(KZ)( ) Ixxye
dA? 1 _ dA?
a(K)=—A2+(1—K2)d(K2)+§A2d(K2) % A2, 20+ 2K dA2 0 )
+= a + J
2 ( XV ¢ d(Kz)( XXXP
1 daz 3
+a; Z(1+2K2)A2d(Kz)+§A4 y dA? T2 (.18
+a a . A
7 d(KZ)( )IxV<e
(A%) (A%¢) g
a A? ak2 as K2AZ aK2 +AY ¢ Considering normal modes proportional & **7T with
) (K%) E=(K cop,k Sinp), we obtain for the growth rate, a qua-
do A2 dratic equation. One of the solutions is always negative. The
K? +v| 8PA3| $p+K?¢ other is given by
d(K2) d(K?)
g
d d A2 —= — T(k) P( 7]2+ V)_ 7;2[2a(k)k20052p
+2K?2 ¢ +2P(v+4k?)| A (#A) * 27(k) 7
d(K?) d(K?)
dA?2 1 dA? +b(k)k2sin2p+c(k) ]+ 1 {7(K)P(7*+ v)
+ ag| K2A + =A% | —2a7A ,
d(k?) 4 d(K?)
(312 + n?[ 2a(k)k?cogp+ b(k)k?sin2p+c(k)]}?
, . . A(k)?
DI UPLL, GO JV I S BT —47(K) n°g(K) (aoSir’p — agsinp cop)k| —
(K)=—az| 5 grz T8N T2 ¢@
dA? 2 )
d 1 dAz 1 +k? (k)coSp | —4r(k) 7°g(k)
+A2—¢ +yao| AAKZ-1)— — =A%, d(K?)
dK? 8 dk? 4
dA2 1/2
(3.13 X | — assinpcogpk k ) : 3.1
rsinpeospk 7 (K (319
c(K)=(1-K?)A2+ 2 a A%+ asK?A2
(K)=( ) APt as ¢ In Eq. (3.19, a7;=v=0 in the case of free-slip boundary
+ Y[ PpA3(v+8K?)+ 2 agA3— a,A3]. conditions whilea,= as=0 for rigid boundary conditions.
(3.14 C. Relation between the small-angle
The second solvability condition is always satisfied, and the and skewed-varicose instabilities
expansion must thus be pushed to the next order. In the absence of rotation and for free-slip boundaries,

At order 7%, we have an equation of the form straight parallel rolls with a wave number larger than critical,
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0.6 K>k, ke ke

oa | \°\ [ AR
os [\ | [ []» N PARRSP

€
0.2 (@ (b)
0.1 . :
0 FIG. 7. Sketch in Fourier space of the couples of modes
e*i(k=74)x associated with the phase instability, for g, (a) and
040608 1 1.4 k<q. (b), together with the critical circléof radiusqy).

FIG. 5. Stability balloon relatively to long-wave instabilities in 5|, ofp, whose sign is opposite to that of the external
. e _ 72 . 1
the case of free-slip boundary conditions R+ 2 andn=10 <, in rotation [Fig. 6(c)]. In physical space, a phase perturbation

the absence of rotation. Here, e represents the frontier of the ECI?Nith an anglep produces a distortion of the rolls where

haus instability and sv that of the skewed-varicose instability. Fur'compressed and dilated regions alternate along an axis mak-
thermore, N is the neutral curve for convection onset. . . . .
ing the same angle witk. The associated mean flow dis-

plays shear layers perpendicular to this axis. According to
. the anglep, the perturbation is amplified or not, as predicted
were shown to be unstable with respect to the skewedyy the phase modulation analysis. Note that the aspect ratio
varicose instability{15,16. This phenomenon is recovered of the hox required to validate the phase theory increases
by computing the stability balloon from E¢3.19. Taking  \yith the rotation rate.
the critical wave numbenq. as ugity, the result is illustrated ¢ s of interest to compare more precisely the small-angle
in Fig. 5 for P=2 and »=10"°. The dependency of the jnsiapility resulting from an amplitude perturbation with the
growth rate of the skewed-varicose instability with the angleasymmetric skewed-varicose instability associated with a
p associated to the phase perturbation is presented in Fi%hase perturbation. By inspection of HQ.44), it is easily
6(a) for rolls of wave numbek=1.03 and the same values of geen that, in the small-angle boundary layer, the growth rate
P and# as in Fig. 5. We note that, as usual, the growth ratéyf the amplitude perturbation scales lik&, where g is the
is symmetric in terms op. angle between the basic and the perturbation wave vectors,

When rotation is turned on, we observe thatKorl, the  \hijle Eq. (3.19 shows that the growth rate of the phase
skewed-varicose instability becomes *“asymmetric,” the perturbation(in the primitive variables scales like the in-
growth rate being now maximum for a finite value of the yerse aspect ratig of the box. On the other hand, in such a
anglep whose sign is that of the rotatigfig. 6b)]. Whenk  pox the minimum perturbation angkis of order 2. It
is smaller than critical, the unstable modes are associated ¥g|jows that both growth rates scale like the inverse aspect
and not like#?, as usual for phase instabilities in the case of
no-slip top and bottom boundaries. This larger growth rate
results from the strong magnitude of the mean flow.

{20 Furthermore, both instabilities lead to a similar dynamics
in physical space, governed by the formation of shear layers
which trigger the reconnection of the rolls and their global
rotation. Nevertheless, the eigenmodes involved in the two

p descriptions of what appears to be essentially the same insta-
45 1 050 05 1 15 bility are different. In the amplitude framework, the pertur-
=0 k=103 bation consists of a single Fourier mode, which is always
unstable if the angle of its wave vector, with that of the basic
rolls, has the sign of the external rotation. In the phase for-
malism, in contrast, the perturbing modes can be viewed as a
couple of satellites whose separation scales like the inverse
1000 800 aspect rationp of the convection cell. In a confined system,
the distance between the two satellites is sufficient to make
the associated modes evolve as two independent amplitude

(a)

o/K

® o/x ) o/x
16001 1200

400 400

|\ | P _ P perturbations. In contrast, when the aspect ratio of the box is
15 105005115 4151050 05 1 15 large enough, the interaction of the two satellites is resonant,
=10 k=1.03 t=10 k=0.99 and a mode which alone would be unstable may be stabilized

by the presence of its companion, as predicted by the phase
FIG. 6. Growth rates/ 2 relatively to long wave perturbations theory. When the wave number is distinct from critical, the
for P=2 and =102 (a) no rotation and basic rolls with wave Sign of the rotation can be predicted by noticing that among
number k=1.03, (b) rotation rater=10 and roll wave number the two satellite modes produced by the phase perturbation,
k=1.03(in units ofq,); and(c) rotation rater=10 and roll wave the closest to the critical circle will be preferentially ampli-
numberk=0.99. fied (Fig. 7). For example, for positive rotation and>q.,
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(@) t=0
(b) t=80
(c) t=98

|

‘ (d) t=114
(e) t=167
() t=179
(g) =200

FIG. 8. Time evolution of parallel rolls with wave number 0.9 for'e = 0.3, andr= 10 subject to a phase perturbation: convective mode
(left), mean flow stream functiofmiddle), and two-dimensional energy spectrum of the convective nioght).
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TABLE Il. Variation of the critical wave number and of the

0.6 0.6 cr e ecr ) ) . —~
0.5 05 angle of the skewed-varicose instability fér=0.8 ande=0.3.
. 04 _ 04
€ 03 e oaf N N 0=7/2 Ksy Osv €
02 0.2 '
0.1 0.1 0 1.138 67 46° 0.108
ods 07 08111 13 Oo's 07 11.1 > 1.1402 41.8° 0.109
05 0. . ; . . 5 0. o.gk 1113 7 11411 20° 0.1097
P=0.8 t=0 P=68 1=0 10 1.143 37° 0.111
) ' 15 1.146 96 33.46° 0.1137

FIG. 9. Instability balloon for rigid boundary conditions in the
absence of rotation for Prandtl numbéts-0.8 (a) andP=6.8 (b).
Here e, sv, cr, and zz represent the frontiers of the Eckhaus
skewed-varicose, cross-roll and zigzag instabilities respectively.
is the neutral curve for the onset of convection.

=0) with respect to the phase perturbation anglevhich
olds forr=0, is broken in the presence of rotation, as with
free-slip boundary conditions.

the instability correspond to positiye[see Fig. €)] and the IV. NONLINEAR DYNAMICS FOR FREE-SLIP
rotation will be in the negative direction. Similarly, for BOUNDARY CONDITIONS
k<q., modes with negative are unstablgFig. 6(c)] and

the rotation also takes place in the negative direction. After 2 IS% O(rg%ro)t(\?ves;lemiur:'?eterz:theed ]:/L\J/:{% Pezry;ﬂgg; :Zg'%e’ fIrquri.
while, the mode close to the critical circle becomes dominanl Sl 9 ging

and the pattern undergoes a dynamics prescribed by the a 2& to 256 collocation points, according to the number of

plitude theory, possibly leading to the reversal of the rotatior{OIIS in the gonvgcﬂon cell. The |n|t|al'cond'|t|ons consistin a
direction (Fig. § random noise with a spectrum localized in an annulus cen-

tered around the critical wave-number.

Typical snapshots of patterns emerging in the absence of
rotation are displayed in Figs. 12 and 13. At an infinite

We first display in Fig. 9 the stability balloon in the ab- Prandtl number, labyrinthic roll24] are observedFig. 12,
sence of rotation for our model with rigid boundary condi- while the now classical spiral turbulence state is obtained for
tions for P=0.8 and 6.8. Figure 10 displays the stability a Prandtl number of order unii§Fig. 13.
balloon for both Prandtl numbers in the presence of rotation. The Kippers-Lortz instability regime which develops at
They qualitatively agree near threshold with those derivedan infinite Prandtl number and moderate rotation is shown in
from the primitive equation§3]. Since our analysis is lim- Fig. 14 for 7=50 ande=0.2. We observe the formation of
ited to a neighborhood of threshold, we did not include, as irpatches of parallel rolls of different orientations. As time
Ref. [19], corrective terms designed to bend the balloon aklapses, each patch is gradually replaced by another one
higher values ok. In this context, it is of interest to consider whose rolls are rotated by an angle close to 60°, a dynamics
more precisely the effect of the rotation on the skewedsimilar to that described in Reff25] and[21]. The chaotic
varicose instability, a question addressed experimentally inlynamics due to the KL instability is essentially governed by
Ref.[9]. Tables Il and Ill show foP=0.8 ande=0.3 and the propagation of dislocation arrays separating randomly
0.5, corresponding to two essentially constant values of theriented roll patches whose size is reduced &sincreases.
normalized distance to convection threshold, that the angle  Qualitatively different patterns are observed at smaller
6sy of the wave-vector perturbation decays linearly as in théD.randtI numbers. This regime is illustrated in Fig. 15, vvhmh
experimental results displayed in Fig. 18 of REd]. The  displays a snapshot & and¥ for P=2, =10, and vari-
growth of the critical wave numbeksy (see Fig. 2 of Ref. 0us values of the stress parameter Near the onset
[9)) is, however, underestimated. (e=0.01), the pattern consists of large patches of slightly

Figure 11 displays the stability border relative to long- distorted parallel rollfFig. 15a)], rotating slowly and re-
wave instabilities in the planek(p). The symmetry(for ~ connecting under the influence of the shear flow associated
to the small-angle instability as discussed in Sec. Il B. For

D. Busse balloons for rigid boundary conditions

K sv

17 Vo 'i'iv €=0.05[Fig. 15b)], we observe after about ten horizontal
gg g-g K\ ° diffusion timesT,,, the emergence from the turbulent back-
. . cr cr
€ g'g g g': N § N TABLE IlI. Variation of the critical wave number and of the
0.2 0.2 angle of the skewed-varicose instability fBr=0.8 ande=0.5.
0.1 0.1
o | 0 | —
05 07 09111 13 05 07 09111 13 Q=1/2 ksv Osv €
k k o
0 1.1733 4491 0.1805
P=08 T=10 P=68 =20 5 1.1759 40.68° 0.1817
FIG. 10. Instability balloon in the presence of rotatiorn=20) 7 1.1776 38.96° 0.1829
for rigid boundary conditions at Prandtl numbé?s-0.8 and 6.8. 10 1.1806 36.66° 0.1851
The labels of the long-wave instability boundaries are those of Fig15 1.1873 32.65° 0.1895

9, while ki refers to the Kppers-Lortz instability.
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08 09 1 11 12

k

FIG. 11. Stability domain in the absence of rotati@olid line)
and with a rotation rate= 20 (dashed lingin the (k,p) plane of

the wave number and angle of phase perturbation, for the long- FIG. 13. Cor_wecti\(e pattertieft) a_nd mean flow stream func-

instabilities shown in Eig. 10. wheai=0.3. n=10"2. and tion (right) showing spiral turbulence in the case of free-slip bound-
wave Ins 9- 10, > 7 ' ary conditions, forP=1, €=0.5, andI'=32, in the absence of
P=0.8(a) or 6.8(b). rotation.

-1/2

ground, of a big target associated to a coherent vortex, which .

survives for about 13}, and is then destroyed by a large- f (k= k)?|lw(k)|*d*k

scale shear. Note that in presence of rotation, the mean flow = , 4.9
survives at the center of a perfectly isotropic target, and that f |\7v(k)|2d2k

the targets rotate in the direction of the external rotation. For
€=0.2, the target keeps growing by accretion of adjacent,
rolls until it reaches the size of the computational domain,
and then stabilizefFig. 15¢)]. For an intermediate value of

here

€ (e=0.1), the target does not stabilize, and a cyclic transi- R

tion between a target and a spiral is obserEiy. 16). o jk|W(k)|2d2k

When the rotation induces deformations, the innermost roll k=—7F7"—7"—"7"7— (4.2
of the target meets its neighbor, and a pair of dislocations is J |\7v(k)|2d2k

formed. One of them glides inwards, forming a spiral, while
the other is rapidly convected outwards by the mean flow,
producing a whirling line of low amplitude. The target re- We observe on Fig. 1B) that when targets are formed the
forms when a dislocation of the opposite sign reaches theorrelation increases and so does the mean flow, as measured
center of the spiral. For larges, the target rotates more by the squared., norm |y, of its stream function. The
rigidly, and becomes stable. dynamics is also very sensitive to the Prandtl number. With
When analyzing the influence of the rotation rate, at fiXEQhe same value of the stress param&tef()_? and the same
values of the Prandtl numbeP{2) and of the stress pa- rotation rate ¢=10) but for a Prandtl numbeP=10,
rameter E:o,os), we notice that the structures formed atstraight parallel rolls are obtained when the convection cell
small rotation(e.g.,7=4), are similar to those of Fig. 18, has an aspect ratib=16, the small-angle instability being
while for larger values of- (e.g., 7=230), the angular range Weak and the KL instability absent.
of unstable modes becoming larger, the formation of coher- It iS noticeable that the formation of stable targets is not
ent structures is prevented. More quantitatively, in Fig. 17 SPecific to the case of periodic conditions in the horizontal
we consider for a Prandtl numbBr= 1.2 and a stress param- directions. _Such s_truc_tures are_also ob_talned in simulations
~ . . . performed in a cylindrical box with no-slip conditions on the
eter e =0.7, the time variation of the correlation length side wall but free-slip top and bottom boundary conditions.
In this case, the pattern adjusts to the symmetry of the con-
tainer, leading to concentric rolls which occupy the whole

N\
Vo=

S

FIG. 12. Labyrinthic pattern at an infinite Prandtl number, for  FIG. 14. Snapshots of the roll patch dynamics at an infinite
€=0.5 andl'=32, in the absence of rotation. Prandtl number fol =32, €=0.2, and a rotation rate=50.

—



56 PATTERN DYNAMICS IN ROTATING CONVECTION AT ... 4175

FIG. 15. Convective patterfleft) and mean flow stream func-
tion (right) for free-slip boundary conditions witP=2, =10,
I'=16, and increasing values of the stress parameter0.01 (a),
€=0.05(b), ande=0.2 (c).

domain[26]. In contrast, as discuss in Sec. V, a different
dynamics develop with rigid to and bottom boundary condi-
tions where the small-angle instability does not exist.

V. NONLINEAR DYNAMICS FOR RIGID
BOUNDARY CONDITIONS

The dynamics developing with rigid top and bottom

boundaries and periodic conditions in the horizontal direc-

tions is displayed in Fig. 18, for a Prandtl numier1.2
and a stress parameter=0.7. In the absence of rotation
[Fig. 18a)], we observe the now well-documented spiral tur-
bulence[27-34. The effect of a small rotatiom= 10 [Fig.

FIG. 16. Transition between a spiral and a target For 2,
r=10,'=16, €=0.1, and free-slip boundary conditions.

onset of the Kppers-Lortz instability, we observe a progres-
sive “relaminarization” of the flow, characterized by the
gliding and annihilation of dislocations, and leading to a
highly correlated pattern in the form of quasiparallel rolls
[Fig. 18c)]. In the presence of lateral boundaries, this phe-
nomenon is less conspicuous due to the continuing formation
and annihilation of dislocations on the sidewdl$]. These
defects were shown to be responsible for the appearance of
the Kippers-Lortz instability for rotation rates below the the-
oretical value for its onsd,8]. A maximum of the correla-
tion length aroundr, is nevertheless visible in experimental
results for a large aspect ratio cell reported in Fig. 4 of Ref.
[37], although the authors do not stress this point. We ob-
serve in Fig. 20 that the rotation rateormalized by the
critical rotation 7, ) at which the relaminarization is most

15 3
1.0 2 ]
2
C |\vo|L2 =0

0.5 Lw*wwww\mw 1

0

0
0 500 1000 1500 (a) 0 500 1000 1500
t t

15 8
50
1.0
4 |W§|L2' : 1=10
0.5 W
20
0 0
0 500 1000 (b) "0 s00 , 1000
15 2
15
1.0 *
g ngle =50
0.5
0.5

0 o]
0 500 1000 1500 (C) 0 500 1000 1500
t t

18(b)] is to increase the size of the spirals and to force their
rotating motion in the same direction as that of the external FIG. 17. Time evolution of the correlation lengthdefined by

rotation [35,36. This last point is illustrated in Fig. 19,
which displays the convective field fe= — 10, 0, and+ 10.

Eq. (4.2 (left) and of theL.? norm of the mean flow stream function
(right) for free-slip boundary conditions, witR=1.2,€=0.7, and

Up to rotation rates comparable to the critical value for therotation ratesr=0 (a), 7=10 (b) and 7=50 (c).
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FIG. 18. Convective pattern for rigid boundary conditions, with
P=1.2 ande=0.7, andr=0 (&), 7=10 (b), 7=40 (c) and 7=56
(d).

efficient, increases as the Prandtl number is reduced. Note §
that the quasistraight roll patterns obtained after the relami-
narization process, are still subject to the KL instability, but
the value ofr being close tory, , the patches have a size
comparable to that of the container. As a result, the rolls
rotate globally, keeping a high degree of correlation. In Fig.
21, we display the correlation lengthandL, norm of the
stream functiony, for P=1.2,'¢=0.7, and various rotation ~_ FIG. 19. Convective patterfieft) and mean flow stream func-
rates=0, 10, and 40. The striking features die the de- tion filtered by the condltlo@|>sudw|/3 (right) for rigid bound-
crease of thé.2 norm of the mean flow with timéalthough ~ ary conditionsP=1.2 and €=0.7, and7=10 (a), 7=0 (b) or
not monotoni¢ and (i) the anticorrelation betweeti and T= —.10 (c), showing positive or negative vortex cores according to
| ¥, especially visible for-=40. The gradual decrease of the sign ofr.

|Wol., for =0 is consistent with the formation of spirals

and targets for which the mean flow is minimum. Although
the system is not a gradient flow, it evolves as if it were
trying to maximize the heat transport by creating structures
for which the friction of the horizontal flow on the top and
bottom boundaries is minimized. For nonzero rotation rates,
the formation of very correlated structurémost straight
rolls) also corresponds to a minimization of the mean flow. It
is noticeable that with free-slip boundaries, this tendency is =
exactly the opposite. In the latter case, the coherent struc- C
tures formed at= 10, correspond to targets which maximize
the mean flowFig. 17b)]. Finally, when the Kppers-Lortz
instability is efficient, a highly chaotic regime is recovered
[Fig. 18d)]. 05 1 15 2 25
We conclude this section by mentioning that a transition /T,
between spiral chaos and a stationary pattern of straight par-
allel roll was recently observed in convection experiments FIG. 20. Time average of the correlation lengthvs the rota-
performed in the absence of rotation in a square cell with aion rate  normalized by the critical valuey, for onset of the
fluid of Prandtl number one, in a range of parameters foKlppers-Lortz instability, for different Prandtl numbers.
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15 0.8 spiral chaos and of straight parallel rolls develops, and, in
some instances, a patch of straight parallel rolls grows and
c ] ) ;).6 kv =0 fills the entire cell. This situation contrasts with experiments
Yo 2 in cylindrical boxes where the roll tendency to align perpen-
05" T ] dicularly with the boundaries, results in roll curvature and,
0.2 ] under the mean flow effect, leads to a persistent spiral chaos.
0 0 In this context, the question arises whether there exits a re-
0 500 1500 2500 (@) O 500 1500 2500 lation between the above transition and the relaminarization
! ! observed in our rotating convection model, the enhancement
15 08 of the defect motions due to rotation promoting faster relami-
; 1 06 A\A*\M_,_, narization.
C w2 1=10
0.5 b 02 VI. SUMMARY
0.2 1 A Swift-Hohenberg-type model was derived for rotating
0 0 convection at a finite Prandtl number with free-slip or rigid
0 500 1500 2500 (b) o 500 1500 2500 boundary conditions. Rotation is shown to reduce the friction
6 1.2 coefficient of the mean flow on the rigid top and bottom
5 boundaries, and the nonlinear couplings are adjusted in such
4 0.8t a way as to accurately reproduce both the zigzag and
(s .wgle . 1=40 Klippers-Lortz instabilities. Numerical integration in the case
2 0.4 | of a periodic horizontal geometry points out the relaminar-
1 ization effect of a moderate rotation which counterbalances
0 the destabilizing influence of the mean flow. This is mostly a

A L 0 . \
01000 3000 5000 (c) 01000 3000 5000 consequence of the enhanced gliding of the dislocations
! which, in periodic geometries, can totally annihilate each
FIG. 21. Time evolution of the correlation length(left) and of othgr. With rigid boundarieg, this leads to the reformation of
the squared.-norm of the mean flow stream functigright) for stra|ght parallel rolls, while in the case of free-slip boundary
rigid boundary condition®=1.2 ande =0.7, and different rotation _Condlt!(.)ns these structures, destabilized by the small-ang_le
ratesr=0 (a), 7=10 (b), and =40 (c). instability, evolve toward large coherent targets embedded in
small-scale turbulence.

which straight parallel rolls are stable in an infinite medium
[38]. After convection in the system has been initialized by a
jump from below onset{<0) to above onsete>0), for- Numerical simulations were performed on the CRAY-
mation of straight parallel rolls was observed near the side€98 of IDRIS, Palaiseau. This work benefited from partial
walls, while a random pattern appears in the middle of thesupport by the European Cooperative Network ERBC
cell. If € is not too large, a competition between patches ofHRXCT930410.
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