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The dynamo action of a time-periodic two-dimensional flow close to integrability is analyzed. At fixed
Reynolds number R™ and frequency w, magnetic structures develop in the form of both eddies and filaments.
The growth rate of the eddies appears to be the same for all frequencies and decreases with R™, while the
growth rate of the filaments displays a strong w-dependence and, except in the limit of zero or infinite
frequencies, converges to a non-zero value as R™ — oo. Magnetic filaments develop in the widest chaotic
zones located near the homoclinic or heteroclinic tangles, and their growth rate is strongly influenced by the
width of these zones which is estimated using Melnikov formalism. This study illustrates quantitatively that
not only a local stretching but also a sizable chaotic zone is required for fast dynamo action.
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1. INTRODUCTION

Dynamo action in electrically conducting fluids is often considered as the basic
mechanism at the origin of the magnetic field in astro and geophysical objects. In the
situation where the magnetic Reynolds number R is large, the growth rate of a seed
magneticfield often appears to be related to the advection rather than the diffusion time
scale. This provided a main motivation for efforts devoted to the problem of existence
of “fast dynamos” (Vainstein and Zeldovich, 1972) which persist in the limit R® — o,
[see Childress (1992) for a recent review]. It was often conjectured, and recently proved
in the case of spatially smooth underlying flows (Vishik, 1992; Klapper and Young,
1994), that fluid trajectories are to be chaotic (Lagrangian chaos) for existence of a fast
dynamo. Definite evidences of fast dynamos are mostly restricted to discrete flow
models (mappings) (Bayly and Childress, 1988; Finn and Ott, 1988; Gilbert, 1992), or to
velocity fields displaying singularities (Soward, 1987). The understanding is more
limited in the case of smooth flows. A possible candidate is the steady three-dimen-
sional ABC flow (Dombre et al., 1986), but the range of magnetic Reynolds numbers for
which the magnetic growth rate was seen to be almost constant, is insufficient to
conclude unambiguously (Arnold and Korkina, 1983; Galloway and Frisch, 1986). An
explicit example of the spatial structure of the magnetic field resulting from a chaotic
dynamo was given by Oseledets (1993).

Examples of flows that seem well-suited for probing the large magnetic Reynolds
number limit depend on two space coordinates but are unsteady (Galloway and
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Proctor, 1992; Otani, 1993). In this context, magnetic field modes with a different
wavevector component in the third direction evolve independently. Consequently,
a specific value for this component can be prescribed and the magnetic field computed
using a two-dimensional code. An analytical estimate of the growth rate was recently
derived for a flow obtained by pulsing two distinct Beltrami waves (Soward, 1993), but
the problem of the exchange of the limits (infinite Reynolds number and vanishing
transition time between the pulses) remains open. In the case of time-continuous flows
u=(u,,u,,u,), convincing numerical evidence of fast dynamo action was obtained by
numerical simulations at magnetic Reynolds numbers up to 10* of the so called
“circularly polarized model” (CP) (Galloway and Proctor, 1992)

u, = Asin(z + ¢sin Qt) + Ccos(y + ecos Qt),
u, = Acos(z + &sin Qt), (1.1)
u, = Csin(y + ecos Qt),

which can be viewed as a time-dependent perturbation of the Robert cellular flow
(Robert, 1972). In the present paper, we concentrate on the dynamo action of the CP
flow in the regime when the perturbation is assumed to be weak (small ). The regions of
chaos for the underlying dynamical system are then confined near the heteroclinic
(when A4 = C) or homoclinic (when 4 # C) orbits of the Robert flow. The main issues
concern the sensitivity of the dynamo growth rate to the degree of the chaos of the
underlying flow and the geometry of the emerging magnetic field, when the flow
parameters are varied. Preliminary investigations of the case 4 = C, were reported in
Ponty et al. (1993).

2. THE CP FLOW

The fluid trajectories of the CP flow, to be understood mod 27, obey

y = Acos(z + ¢sin Qt),
(2.1)
z=Csin(y + ecosQt),

together with
X = Asin(z + esin Qt) + Ccos(y + ecos Q). (2.1a)

By dividing (2.1) and (2.1a) by C and rescaling time in the form t = Ct, it is easily seen
that in addition to the perturbation amplitude ¢, the dynamical system depends on the
reduced frequency w = Q/C and on the ratio a = A/C. In the absence of perturbation
(e =0), the two-dimensional system (2.1) admits two elliptic stagnation points (0, /2)
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and (n, 37/2), and also two hyperbolic ones (0, 37/2), and (=, 1/2). These latter points are
connected by heteroclinic orbits for a =1, while the system displays homoclinic
trajectories when a # 1. For ¢ # 0, the stagnation points rotate with angular velocity
w on circles of radius ¢, centered at the stagnation points of the unperturbed system.

Useful insight on the dynamics of system (2.1) is provided by Poincaré sections
(stroboscopic views) at times T = 2nn/w with ne4". Figure 1 displays such sections for
w = 0.8, when a =1 (on the left hand side) and a = 0.5 (on the right hand side), with
¢=1,0.5,0.2 and 0.1 (from top to bottom). The case a = ¢ = 1 is closed to the situation
considered by Galloway and Proctor (1992) where Q= 1, 4 = C = . /3/2, correspond-
ingto w = 0.8165. The chaotic regions cover a significant part of the plane for ¢ of order
unity but concentrate near the heteroclinic or homoclinic orbits of the unperturbed
system when ¢ is decreased. For a = 1, these regions are connected, and only one initial
condition is necessary to generate the pictures, while, for a # 1, there are two disjoint
chaotic regions, when ¢ is small enough. A non trivial effect on the size of the chaotic
zones is obtained by varying the frequency w of the perturbation. Figure 2 shows the
Poincareé section in the (y, z)-plane in the casesa = 1 and a = 0.5, for ¢ = 0.1 and various
values of the frequency w. Significant changes in the thickness of the chaotic regions is
visible. We observe in the case a = 0.5 that the widths of the chaotic regions associated
with distinct homoclinic orbits of the unperturbed system may be different. Note in
particular the tiny chaotic zone near the “inner” homoclinic orbit when w = 0.6, and
near the “outer” one when w = 1.9. As suggested by Leonard et al. (1987) and by Ottino
(1989), the thickness of the chaotic zones can be estimated by the distance between the
stable and unstable manifolds resulting from perturbations of homoclinic or hetero-
clinic trajectories. In the case of nearly integrable flows, this distance can be computed
perturbatively using the Melnikov method, an approach often used to test the existence
of transverse homoclinic orbits, leading to Smale horse-shoes and chaotic dynamics
(Ottino, 1989; Guckenheimer and Holmes, 1983).

As noticed in Ponty et al. (1993), the change of variables

u=z—mn/2+esinwr,

v=y+ £COSWT,
puts (2.1) in the standard form
U="f+eg, (2.3)

for implementation of the Melnikov method (Guckenheimer and Holmes, 1983). Here
U=(u,v), f=(sinv, —asinu) and g=(wcoswr, —wsinwr). To leading order, the
distance between the stable and unstable manifolds is given by

M(ty)

At) = e O]
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Figure 1 Stroboscopic views at times ¢ = 2nn/w of the fluid trajectories in a 2z-periodic box of the
underlying flow (2.1) with a = 4/C =1 (left) and a = A/C = 0.5 (right) for different amplitudes ¢ of the time
periodic perturbation, when the reduced frequency is w = Q/4 = 0.8.
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a=05 w=19

Figure 2 Same stroboscopic views as in Figure 1 with e=0.1 and various w, for a =1 (left) and a=0.5
(right).
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with

M(t,) = foo flq,(1)] x glgo(z), T + 101 dr, (2.4)

o0

where q,(t) denotes the (unperturbed) homoclinic or heteroclinic orbit. When q,(0) is
taken at finite distance of the hyperbolic fixed point, |f[q,(0)]| is of order unity.

For ¢ = 0, the system (2.1) admits four homoclinic or heteroclinic orbits, g} = (1}, v}),
labelled by the subscript j. For each of them, (2.4) becomes

o8}

sin v (1) sin [w(t + 7o) ] dt + aa)j sin u(t) cos [w(t + 14)] d1.
N 2.5)

o

M%w=—wj

0

For a = 1, the chaotic regions are connected and in this case we are mostly interested
in the function F(w) = sup;sup,, | Mi(z,)| referred to as the “Melnikov function”. As
shown in Ponty et al. (1993), for a=1, we have F(w)= wn sech (nw/2), a quantity
plotted in Figure 3a.

In the case a # 1, the system displays two distinct chaotic zones for small enough e.
The Melnikov functions associated to each of these zones are computed in the
Appendix and plotted in Figure 3b. Note the existence of several zeros and local
maxima. The existence of tiny chaotic zones visible in Figure 2 clearly corresponds to
the very small value of the associated Melnikov functions.

Another important characteristic of a chaotic system is provided by the Lyapunov
exponents and in particular the largest one L which estimates the maximum rate of
stretching of the magnetic field. The variation of L for a = 1, is plotted as a function of e,
when o = 0.8 in Figure 4a, and as a function of w for ¢ = 0.1 in Figure 4b. We observe
that at fixed w, the largest Lyapunov exponent (like the area of the chaotic zone) tends
to saturate when ¢ is increased. Furthermore, its variation with o when ¢ = 0.1 shows
that for w close to 3 or larger (for which the chaotic zones are very small), L remains
significant, indicating an important but localized stretching of the magnetic field.
A similar result holds when a # 1. In this case, the chaotic zones are not connected and
different but close values are obtained for the Lyapunov exponents of trajectories lying
in distinct chaotic regions.

3. DYNAMO GROWTH RATES
Two series of numerical integrations of the induction equation

a¢=mexm+§%mn (3.1)

have been performed with the velocity field (2.1), one with A = C = ,/3/2 (correspond-
ing to @ = 1) and the other with A = C/2 =,/3/5 (for which a = 0.5). In both series of
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Figure 3 (a) The Melnikov function for @ = 1;(b) Melnikov functions F , and F _ associated to the outer and
inner chaotic zones respectively, for a = 0.5. (c) Melnikov functions F, and F_ fora=0.7.

runs, the parameters ¢ and @ are varied. We concentrate on magnetic fields with
a wavevector component in the x-direction k, =0.57, as in Galloway and Proctor
(1992). Furthermore, the velocity field (1.1) including only Fourier modes of wavenum-
ber unity, the induction equation is efficiently solved in the spectral space, since in this
case, the convolutions require, for each direction, a number of operations equal to the
number of retained modes. We observe that as R™ exceeds a critical value of order of
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Figure4 Largest Lyapunov exponent L for a= 1: (a) versus & for w = 0.8; (b) versus w for ¢ = 0.1.

a few units (depending on the velocity field parameters), a dynamo action takes place
and, after a transient, the magnetic energy EM = (| B|*dx grows exponentially. This
“kinematic dynamo” where the flow motion is given, models the early time amplifica-
tion of a seed magnetic field. Later on, the magnetic field usually reacts on the flow
through the Lorentz force, leading to a saturation of the dynamo, a question which is
beyond the object of the present paper.

We are here mainly interested in the influence of the velocity parameters on the
dynamo growth rate A =lim,_ (1/2t)In EM. Special attention is devoted to the limit
RM - o0, an asymptotic regime which is approached non uniformly, and requires larger
Reynolds numbers as ¢ is decreased. The influence of the deviation from integrability
of the underlying flow is illustrated in Figure 5a which displays the variation of 4
with ¢, for a =1, w = 0.8 and R™ = 500. For comparison, the variation of the relative
area S of the chaotic zones in the (y — z)-plane is plotted in Figure 5b. A strong
correlation between the two quantities is visible, although the Reynolds number is
moderate.

In the context of a fast dynamo, an important issue is the variation of the growth rate
J with the magnetic Reynolds number R™. Figure 6 shows this variation for a =1 and
different values of the perturbation frequency w within the intervals (a) 0.2 < w < 0.8
and (b) 0.8 <w<3.0. For low Reynolds numbers, the growth rate is essentially
independent of w, whereas a non trivial dependency emerges when RM exceeds a few
tens. The maximal growth rate occurs near @ = 0.8. At this frequency, a tendency of 4 to
saturate is seen when the Reynolds number reaches values of order 10*. Such large
values of RM are required because of the smallness of ¢ (here equal to 0.1). In the case
¢=1and w close to 0.8 considered by Galloway and Proctor (1992), convergence was
obtained with R ~ 100. Furthermore, at both low and high frequencies within the
considered range, we observe an intermediate domain of Reynolds numbers for which
A is independent of @ and decreases with R™. At higher Reynolds numbers (depending
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Figure 5 (a) Magnetic field growth rate 4 versus ¢ fora = 1, = 0.8 and RM = 500. (b) Variation with ¢ of the
fraction S of the (y — z)-domain associated with a chaotic dynamics for o = 0.8.

on w), a different behavior is observed: the growth rate increases with R™ and
shows a tendency to saturate at a finite value, indicative of a fast dynamo. The
Reynolds numbers we used seem insufficient to approach this asymptotic regime
when 0> 1.6.

The variation of the growth rate A with w for the simulations at the largest available
magnetic Reynolds numbers is conveniently presented in Figure 7. For both small and
large values of w, plateaux whose amplitude decreases with R™, are visible. At moderate
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Figure 6 Magnetic field growth rate 4 versus the magnetic Reynolds number R™ for a=1 and ¢=0.1.
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Figure 7 Magnetic field growth rate versus o for several Reynolds numbers (& = 0.1).
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Reynolds numbers, two maxima are present near w = 0.8 and w = 1.4, and tend to get
nearer as R™ is increased. This picture of bumps and plateaux suggests that two types of
dynamos are operating in such flows. For values of the perturbation frequency w near
unity, the convergence of the magnetic field growth rate as the Reynolds number is
increased, indicates the existence of a fast dynamo. As seen on Figure 5, the presumed
asymptotic growth rate for w = 0.8 and ¢ = 0.1 is about 0.11, roughly one third of the
value gives by Galloway and Proctor (1992) for ¢ = 1. On the other hand, the two
plateaux are indicative of a slow dynamo, at least if the behavior we observe can be
extrapolated to infinite Reynolds numbers.

When analyzing the influence of the frequency w on the dynamo efficiency, we note
for the case of small ¢ (Figure 7), the proximity of the largest magnetic field growth rate
and the maximum of the Melnikov function (Figure 3a). In contrast, this frequency
range is by no way singled out for the largest Lyapunov exponent (Figure 4). This
suggests that, at least for weakly chaotic systems (small ¢), the width of the chaotic zones
has a dominant influence on the efficiency of the dynamo action. An estimate of the
magnetic growth rate was proposed by Ott ef al. (1992) and Du and Ott (1993) in terms
of Lyapunov exponents, and of the cancellation exponent which characterizes the
complexity of the small-scale structure of the emerging magnetic field. A measure of this
exponent requires huge Reynolds numbers, several orders of magnitudes in excess of
those used in the present simulations where, as seen in Figure 12, individual magnetic
field lobes are well-resolved but scanty.

In the case a = 0.5, for which heteroclinic connections are replaced by homoclinic
orbits in the unperturbed underlying flow, Figure 8 shows the growth rate A versus o at
Reynolds number RM = 500, for ¢ = 0.1 and 0.2. In the latter case, chaotic zones in the
Poincaré section which are distinct for ¢ =0.1 have merged (see Figure 1) and the
growth rate remains significant on a more extended range of frequencies. Although
the Reynolds number is moderate, the growth rate appears to be again dominant
near w =0.8, not far from the maximum w = 0.6 of the largest Melnikov function
(Figure 3b), and this for both values of e.

2. (a) 2, (b)
e=0.1 e=02
a=05 ] a =0.5

A A

1. 1

0. . 0

0 1 2. 3 0
®

Figure 8 Growth rate A versus w at Reynolds numbers R = 500, for a = 0.5, (a) when & = 0.1 (a) and (b)
£=0.2(b).
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4. GEOMETRY OF THE MAGNETIC FIELD

Figure 9 shows for a = 1, ¢ = 0.1 and various values of the frequency w, the contours of
the magnetic field strength |b| in the plane x = 0, when the exponential growth is well
established. Figure 10 presents similar results for ¢ = 0.5. It is clear from both figures
that two types of structures have emerged. Roundish magnetic eddies are dominant for
both low and high values of w, whereas elongated filaments dominate for values of
 near the maximum growth rate. Eddies are localized in the vicinity of elliptic
stagnation points, while filaments are concentrated in the immediate neighborhood of

e
R

>

Figure 9 Magnetic contours for a = 1, ¢ = 0.1, R™ = 2000 and various .
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Figure 10 Magnetic contours for a = 0.5, ¢ = 0.1, R® = 2000 and various w.

the unstable manifolds of the hyperbolic stagnation points with the peak field centered
close to them.

The three-dimensional perspectives displayed in Figure 11 for a = 1, show that the
eddies are associated with magnetic fields transverse to the ( y, z)-plane and pointing in
opposite directions. The filaments are mostly contained within the ( y, z)-plane, and as
the Reynolds number is increased, the magnetic field modulus displays more spatial
oscillations in the transverse direction (Figure 12). The relative importance of the
eddies and the filaments may depend on time, since their growth rates are different.
A quantitative measurement was made for a =1, ¢ = 0.1 and R™ = 500. For all tested
values of the frequency w, the growth rate of the eddies remains essentially constant and
close to 0.02, whereas the filament growth rate (which strongly depends on w)
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(b)
w=0.8

Figure 11 Three-dimensional perspective view of the magnetic field when a=1 and R™ = 500. (a) for
w = 0.2, (b) for w = 0.8,

dominates, except possibly for very small and very large . The lack of dependence on
w of the eddy growth rate is at the origin of the plateaux displayed in Figure 7, which
were seen to decrease with R™, a characteristic property of a slow dynamo. In contrast,
the filaments seem associated to fast dynamo action.

The spectral signatures of the two types of spatial structures is visible in Figure 13
where, as can be seen, the magnetic energy spectra is plotted in lin-log coordinates for
the parametersa = 1,e = 0.1, RM = 5000 with (a) @ = 0.8 and (b) w = 0.2. In the former
case, the spectrum is quasi-constant up to k ~ 50, corresponding to a sharp structure of
width &1 ~ 27/50 (see Figure 12). In the latter, the spectrum decreases rapidly, until it
meets (at a level of order 107 !°) a broad band noisy spectrum corresponding to
a low-level filamentary structure with smaller growth rate, as can be checked on
contours with logarithmically assigned values.
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Figure 12 Variation of the magnetic field modulus along z =17, for = 0.8, a =1 and R™ = 5000 (linear
scale).

When a#1 and ¢ small enough, two distinct chaotic zones exist, as shown in
Figure 2. By inspection of Figure 10, it is striking that the fastest growing magnetic
structures are localized in space in the wider chaotic regions, as measured by the
Melnikov function (Figure 3b). Indeed, for a =0.5, when w =0.8, the F, function
defined in the Appendix is dominant (see Figure 3b) and the magnetic field grows near
the perturbed homoclinic orbit associated to the (0, 3n/2) stagnation point (“inner
orbit”), whereas when w = 1.6, F _ is dominant and the magnetic field growths near the
homoclinic orbit associated to the (7, 7/2)-stagnation point (“outer orbit”). We checked
that this configuration is preserved when the Reynolds number is increased. Similar
observations were made for other values of a (still keeping ¢ =0.1). The generated
magnetic field which develops for a =0.7 is shown when @ =0.6 (which as seen in
Figure 3c corresponds to a strong dominance of F ), w = 1.0 (in which case F, and F _
are almost equal), w = 1.5 (for which F~ is dominant) and finally w = 2.5 (where F , and
F_ are both relatively small, although F _ still dominates). We indeed observe that
when F_ (resp. F_) dominates, the magnetic field develops in the outer (resp. inner)
chaotic region. This determinant influence of the largest Melnikov function was also
successfully tested with a=10.2 and ¢ = 0.1. However, when at fixed ¢ the value of a is
increased (for example ¢ = 0.1 and a = 0.8), the chaotic zones tend to merge and the
magnetic field develops in the common chaotic zone.
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Figure 13 Magnetic energy spectra in lin-log coordinates for a =1, R™ = 5000 with (a) w = 0.8 and (b)
w=02.

Finally, for a = 0.5, we observe that when the chaotic zones are no longer distinct (for
example w =0.8 at ¢ =0.2), the dominant magnetic structures (not shown) are still
located near the same unstable manifold as in the case ¢ = 0.1 where the chaotic zones
are distinct. This is similar to the observation that for a = 1 and ¢ = 1 (where the chaotic
zones are very extended), the magnetic structures develop in the vicinity of the unstable
manifold of the hyperbolic point (Galloway and Proctor, 1992).

In conclusion, we have considered the kinematic dynamo action of steady two-
dimensional flows subject to weak time-periodic perturbations, thus falling into the
realm of almost integrable dynamics for the fluid particles. We observed that different
magnetic structures are generated in the integral and chaotic zones. In the latter,
magnetic structures in the form of sheets survive in the limit of infinite Reynolds
number and appear to be strongly sensitive to the width of the chaotic zones controlled
by the time frequency of the flow and quantitatively estimated in the context of the
Melnikov theory. An interesting question is the stability of these structures in. the full
magnetohydrodynamic regime, when the reaction of the Lorentz force on the fluid
velocity becomes relevant.
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APPENDIX

We compute here the Melnikov functions for the two chaotic zones associated to
perturbed homoclinic orbits of the dynamical system (2.1), in the case a # 1. Due to the
system symmetries, it is sufficient to concentrate on a < 1. Using the notation of Section
2, the solution (u,, v,) of the unperturbed system (2.3) with ¢ = 0, rewrites

dv,

duy,
-8
2a\/l —a " *(H — cosv,)?

d't:S >
1\/1~(H~acosu0)2

dr= , (A1)

where  H(ugy,v,) =cosvg+acosu, is the associated Hamiltonian. Here
S, = sign(du,y/dt) and S, = sign(dv,/dt) depend on the direction along which the
system evolves on the orbit. The initial conditions corresponding to u, =7 on the
branches j =1 and j = 2,t0 v, = 0 on the branch j = 3, v, = 27 on the branch j = 4 (see
Figure 14). Concerning the sign of S; and S,, on j = 1 for example, we have S1 = —1,
while S2=1fort>0and S2= —1fort <0.

At the “inner” fixed point A corresponding to (uy,v,)=(0,7) [or (n,7/2) in the
original coordinates], H = a — 1 < 0, while at the “outer” fixed point B of coordinates
(m,0) [or (0, 37/2) in the original coordinates], H=1—a > 0.

To deal with (A.l1), it is convenient to define ¢ =/[tan(u,/2)]° and
W= \/5 [tan(v,/2)] 5, where S = sign (H). For the inner orbit, § = — 1, while for the

Figure 14 The various homoclinic orbits (indexed by j) for the unperturbed system (¢ = 0) with a =0.5. On
each orbit, the small square labeled by (z = 0), indicates the initial conditions used in the analysis presented in
the Appendix.
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outer orbit S = 1. We write

1_¢2 a—l//z

—1—+—d)2’ COSUO=—S

cosuy =38

Prescribing that at the initial time 7, =0, ¢(0) =0 and y(0) = /1 — a, the solution of
(A.1) reads

o=./1 —asinh(SSl\/Er)
Y=./1—acosh(SS,./ar).

This enables us to express

2/ay
G (A.2)

sinvy, =S8,

2¢
SZW’

sinuy, = —

Substituting in (2.5) and computing the resulting integrals with the condition that for
a<1, vy(t) =v,e(—1) and uy(1) = —uy(— 1), we obtain for the Melnikov functions
F,(w)and F_(w), associated to outer and inner chaotic zones respectively,

Fy(w)= sup sup|M/(r,)| =|(awl, +wl,)|

J=2,3 1o
and
F_(w)= sup sup|Mi(zy)|=l(awl, —wl,)|,
ji=1,4 1o
with

11=4\/1—aj°° sinh ¢t m(\/_ )dt
a

\/5 o 1+ (1 —a)sinh?¢

I,=4/1 J cosht cos (%t)dt.

+ (1 — a)sinh?t

These two functions are plotted in Figure 3b for a = 0.5. and in Figure 3c for a =0.7.






