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Abstract We present two models for turbulent flows with periodic boundary con-
ditions and with either rotation, or a magnetic field in the magnetohydrodynam-
ics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as
an invariant-preserving filter, whereas the other model, based on spectral closures,
generalizes the concepts of eddy viscosity and eddy noise. These models, when
used separately or in conjunction, may lead to substantial savings for modeling high
Reynolds number flows when checked against high resolution direct numerical sim-
ulations (DNS), the examples given here being run on grids of up to 15363 points.

1 The Lagrangian model

Turbulence modeling, in engineering as well as for geo- and astrophysics, is a
needed approach even though the power of computers is ever increasing, simply
because the number of excited modes in such flows vastly exceeds the capacity of
computers in the foreseeable future. As the Reynolds number of DNS grows, tests
can be devised which study in detail the properties of such models and thus allow
improvements, or else generalizations to handle more complex flows, for example
taking into account anisotropies in the presence of either rotation or magnetic fields.
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(a)

Fig. 1 A slice of a region of space in which regions of energy transfer smaller than 1% its mean are
shown in black for (left) a LAM model for fluids on a grid of 2563 points and (middle) a DNS of
the Navier-Stokes equations on a 10243 grid at the same Reynolds number: LAM has a substantial
reduction in energy transfer, and thus of dissipation, leading to an energy accumulation at small
scales, as shown in its energy spectrum. Right: kinetic energy spectra for a 15363 DNS of MHD
(solid line), a 5123 LAMHD (dash) with filter at kα = 18 (vertical dash line), and a 5123 LAM
(dots), in the latter case with no magnetic field (b ≡ 0 at all times) but otherwise identical LES
run. For k ∈ [5,40], LAMHD reproduces well the scaling of the DNS, with no bottleneck. For
k close to the filter (k ∈ [kα/2,kα ]), a k0.5 power law (gray line) obtains for fluids using LAM,
corresponding to the energy accumulation at small scale for lack of dissipation, whereas it is not
present for LAMHD; the magnetic energy has no accumulation of energy at small scale either [8].

The first model we have considered can be constructed as a particular filter of
small scales [1] that preserves invariants of the ideal case but in a different norm (H1
instead of L2). It is called the alpha or Lagrangian averaged model (LAM) [2]-[4]
and has been tested in a variety of conditions both in two and three dimensions [5]–
[11] for Navier-Stokes and MHD. This model can be viewed as a quasi-DNS insofar
as it does not introduce by hand a model of the physical effects of the small scales
that are neglected, but rather it preserves the Hamiltonian structure of the underly-
ing equations. However, when leaving sufficient room between the filter length α

of the model and the smallest resolved scale in the computations, a peculiar feature
is observed, namely that small scales are insufficiently dissipated due to a tendency
of the model to create regions in space where the normalized energy transfer ε is
negligible. This is shown in Fig. 1 mapping ε when below 1% its mean (respective
filling factors of regions with negligible ε are 0.26 and 0.67 for DNS and LES-
LAM). Note the larger and more numerous patches of negligible transfer in LAM
(left) compared to the DNS (middle), leading to an energy accumulation at small
scale in the energy spectrum (right, dotted line) before the α cut-off with a posi-
tive slope corresponding to a “bottleneck” [9]. This bottleneck is absent in MHD:
we observe in Fig. 1 (right) the agreement between the spectra for the MHD-DNS
and LAMHD both above and below the filter scale (α = 2π/18); this is probably
due to the nonlocality of nonlinear interactions in MHD, and this lack of accumu-
lation of energy observed in the energy spectrum at large wavenumbers represents
a marked improvement for the Lagrangian model in MHD when compared to the
Navier-Stokes case [11]. Thus, LAMHD is able to reproduce a DNS on a grid of
15363 points, with savings in CPU and memory usage by a factor of 6 in linear
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resolution. In fact, one can pursue the DNS run with LAMHD up to times unreach-
able with reasonable resources using a DNS (it would take ∼ 1.7×106 CPU hours
with present day computers) [8]. In so doing, we observe in Fig. 2 that equipartition
between kinetic and magnetic energy, imposed at t = 0, is broken in time, with the
latter being enhanced by nonlinear interactions; note that the DNS has a small ideal
phase where energy is almost conserved and no kinetic-magnetic exchanges take
place globally, whereas both the LAMHD and the under-resolved DNS depart from
equipartition almost immediately. When considering the total enstrophy (right), the
under-resolved run overestimates it because of an accumulation of small-scale ex-
citation not being properly dissipated, whereas LAMHD is much closer to the DNS
data (with a slight under-estimation of it near the peak). LAMHD should thus prove
quite useful, since it is also known to reproduce well the generation of magnetic
fields by velocity gradients (dynamo effect) and the inverse cascade of magnetic
helicity, as well as small-scale properties such as the variation of the cancellation
exponent of the current density in two space dimensions [12].

(a) (b)

Fig. 2 Temporal evolution of energy (left) and < J2 + ω2 > (right), where ω = ∇× v and J =
∇×b, with v and b the velocity and magnetic field; total energy on top, kinetic EV and magnetic
EM energies below, with EM ≥ EV ∀t. The thick solid line and dots are DNS on grids of 15363 and
2563 points respectively, and the dash line is LAMHD on 2563 points, all with the same Reynolds
numbers. Only the lower resolution computations are performed beyond the peak of dissipation.

2 Spectral models for rotating flows

The second model we test in this paper is based on a two-point closure of turbu-
lence, the Eddy Damped Quasi Normal Markovian or EDQNM (see, e.g., [13]). In
this approach, eddy viscosity and eddy noise are included, and the model allows for
taking into account non-Kolmogorovian energy spectra to assess these transport co-
efficients [14]–[19]; the model builds on the so-called Chollet-Lesieur formulation
of spectral eddy viscosity [20] (hereafter, CL) which is also tested separately against
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Fig. 3 Left: time variation (in units of the eddy turn-over time) of the isotropy coefficient IC =√
< |v1|2 > / < |v2|2 >, with v1, 2 the velocity projected onto e1 = k×z and e2 = k×e1, k being

the wavenumber and z the axis of rotation; solid line: LES (643 grid points); dash: full DNS (2563

points); triangle: full DNS data downgraded to 643 points; Rossby number of 0.03 with a non-
helical forcing at large scale and a non-helical spectral model [18]. Note the DNS/LES agreement
and the progressive return to isotropy. Right: Energy spectrum of the error [Emodel −EDNS]/EDNS
when comparing the DNS on a grid of 15363 points for a rotating flow with Ro ∼ 0.03 with either
an under-resolved DNS (+) on a 1603 grid, with the Chollet-Lesieur model [20] (circles) and the
LES we propose here [14, 18] (solid line), both on grids of 963 points. The error, exponential at
high k for the under-resolved run, is the lowest almost consistently for the spectral model.

DNS at the same Reynolds number Rv and down to Rossby numbers of Ro ∼ 0.03.
Moreover, helical contributions to the transport coefficients, following the helical
EDQNM developed in [21], can be incorporated in the model; these contributions
depend on the helicity spectrum at small scale (where the helicity HV is defined as
usual as 〈v ·ω〉 with ω = ∇×v the vorticity). For example, HV (k) being the helicity
spectral density, one can write, in the temporal variation of the energy spectrum, the
small-scale contributions as:

∂tE(k)∼−2k2E(k)[ν +νturb] −2k2H(k)ν̃turb ; (1)

Eq. (1) uses a short-hand but hopefully self-explanatory notation to bring the struc-
ture of the model (see [14] for details), and it omits both the resolved scale contribu-
tions and the eddy-noise contributions for simplicity. The classical EDQNM eddy
viscosity νt(k, t) ∼

∫
> f1(k, p,q)E(q)d pdq depends on an integral of the energy

spectrum in the small scales (symbolized by
∫
>) and represents the drain of energy

due to the unresolved sub-grid scales; similarly, ν̃t(k, t)∼
∫
> f2(k, p,q)HV (q)d pdq

gives the contribution of small-scale helicity (with k = p+q due to the convolution).
When modeling rotating flows (here, with no magnetic fields) [22], one intro-

duces an obvious external anisotropy in the problem. However, anisotropic models,
as those developed using for example extensions of EDQNM to such flows (see e.g.
[23]-[25] for recent works) are costly since they now depend on both the parallel
and perpendicular (referring to the rotation axis) components of the velocity. On the
other hand, one can remark that in an LES approach, one models the small scales
which can recover some degree of isotropy since the scale-dependent Rossby num-



Modeling of anisotropic turbulent flows with either magnetic fields or imposed rotation 5

ber Ro = v`/`Ω with v` the velocity at scale `, and Ω the rotation rate, gets larger
as `→ 0. In Fig. 3 (right) is given the temporal evolution of the isotropy coefficient
IC (see caption for definition) for the full DNS for a run forced with a non-helical
velocity field (the Taylor-Green flow), the DNS data being downgraded to the grid
resolution of the LES and the LES using the spectral model we propose [19]; this
coefficient, of unit value for full isotropy (rotation is introduced in the run at t ∼ 90
after the flow has settled to a turbulent state), begins to increase substantially once
the inverse cascade of energy builds up, for t ≥ 110, and then decreases under the
influence of the small-scale cascade that restores isotropy to some extent. Further-
more, Fig. 3 shows that the LES, when compared to the DNS downgraded to the LES
run, reproduces this result quite accurately. This means that, at least at the moderate
Rossby number of these computations, down to Ro ∼ 0.03 and micro-Rossby num-
ber ωrms/Ω ≈ 1 (with ωrms the rms value of the vorticity), an isotropic approach is
a workable solution for modeling such flows since the small scales are sufficiently
isotropic. Whether such an agreement will persist at lower Rossby numbers is left
for future investigations, but since Ro ≈ 0.1 in the atmosphere, this spectral model
may prove useful in this context. Fig. 3 (right) confirms this result, by plotting the
energy spectral error for three models (see caption).

Noting that it has been found recently that helicity plays an important role in
the dynamics of turbulent flows in the presence of rotation [17], a point that may
relate to a simplified dynamics of tornadoes, we test further the possibility of using
isotropic spectral models for rotating flows by performing a comparison against a
massive DNS of a rotating helical flow, on a grid of 15363 points; note that more than
700,000 CPU hours were used for this second large DNS run; the Beltrami forcing is
an ABC flow [26] set at wavenumber kF = 7, leaving room for both a direct cascade
and an inverse cascade to take place. Among the many novel features of such a flow
[27], we display here a comparison on two diagnostics, see Fig. 4: when examining
the temporal evolution of the total energy (left) and the energy spectra averaged
over a few turn-over times (right), we see that the LES model (including for this
fully helical case, the helical contributions to eddy viscosity and eddy noise [14])
performs best, and the under-resolved DNS performs worst, in particular because
of an accumulation of energy at both small and large scales. The Chollet-Lesieur
model obtains a growth rate for the energy in the inverse cascade quite close to that
in the DNS but is somewhat more dissipative, whereas the spectral model behaves
better energetically. Similarly, for the energy spectra, the spectral model performs
best. This data thus provides an unambiguous display of the added value of a LES
when contrasted either to under-resolved DNS or to simple eddy-viscosity models
in order to approach the dynamics of complex turbulent flows, with here a huge gain
in resolution (all LES are performed on a grid of [1536/16]3 = 963 points).
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Fig. 4 Helical rotating flow: comparisons between a DNS on a grid of 15363 points (solid line),
an under-resolved 1603 DNS (+), the LES-CL model (grey line), and the helical spectral model
(LES-PH, dash) [14]; the two LES runs use grids of 963 points. The Reynolds number is 5600
and the Rossby number is 0.06. Left: Energy as a function of time; note the unphysical substantial
increase in the case of the under-resolved run (+). Right: Energy spectrum averaged from t = 20 to
t = 30; again, the under-resolved run clearly underperforms the LES models, and LES-PH is the
model closest to the DNS at a substantial savings in computational cost compared to the DNS.

3 Conclusion

The increase of power in computers, with the petascale initiative and beyond, does
not mean one need not worry about modeling of turbulent flows, quite to the con-
trary. With increased capability, one will tackle more complex problems with non
trivial geometries and micro-physics, as needed in a comprehensive approach to
climate, weather, and space physics modeling for example. But because realistic pa-
rameters are still well out of range, we can foresee complementary roles for DNS
and LES, together with experiments and observations: (i) analysis of the dynamics
of complex turbulent flows with highly resolved DNS, followed by (ii) verification
and amelioration of models against such DNS runs, the models being used either
alone or in a combined fashion (see, e.g., [28] using both LAMHD and LES-PH
for the dynamo problem at low magnetic Prandtl number); then (iii) exploration
of parameter space with such models, and finally (iv) starting again the cycle with
new DNS runs. Such a cyclic approach relies on Moore’s law of doubling of pro-
cessor speed every ≈ 18 months, leading to a doubling of resolution in a 3D run
every ≈ 6 years. In the specific cases mentioned in this paper, the savings at given
Reynolds (and magnetic Prandtl or Rossby) numbers, are already substantial since a
LES run on a grid of 963 points reproduces satisfactorily a DNS run that cost almost
104 times more. Such models thus should prove useful in exploring parametrically
dynamical regimes of geophysical and astrophysical turbulence in the presence of
rotation and/or magnetic fields in a variety of conditions such as they arise in nature.
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