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This article considers magnetic field generation by a fluid flow in a system referred to as the
Archontis dynamo: a steady nonlinear MHD state is driven by a prescribed body force. The
field and flow become almost equal and dissipation is concentrated in cigar-like structures
centred on straight-line separatrices. Numerical scaling laws for energy and dissipation are
given that extend previous calculations to smaller diffusivities. The symmetries of the dynamo
are set out, together with their implications for the structure of field and flow along the
separatrices. The scaling of the cigar-like dissipative regions, as the square root of the
diffusivities, is explained by approximations near the separatrices. Rigorous results on
the existence and smoothness of solutions to the steady, forced MHD equations are given.
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1. Introduction

Much is known about fast dynamo action: the rapid growth of magnetic fields at high

magnetic Reynolds number in fluid flows with chaotic streamlines, but the mechanisms
for the dynamical saturation of such fields remain poorly understood. In many cases,
when the growing field equilibrates by modifying the fluid motion, the effect is to switch
off the chaotic stretching in the flow, as measured for example by a reduction in the
finite-time Lyapunov exponents (e.g. Cattaneo et al. 1996, Zienicke et al. 1998). What is

left is a fluid threaded by a magnetic field which resists stretching and so suppresses
overturning fluid motions, but supports elastic wave-like motions, essentially Alfvén
waves with coupled field and flow (e.g. Courvoisier et al. 2010). The final state of many
simulations shows apparently chaotic behaviour in space and time, suggestive of an
attractor of moderate or high dimension, although because of the three-dimensionality
of MHD systems little can be done to explore its properties, for example the fractal

dimension or spectrum of Lyapunov exponents.
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Although this appears to be the outcome of many simulations, as far as they can be
run, there are some intriguing examples where a further phase of evolution takes place:
the magnetic field and flow align, depleting the nonlinear terms and both fields evolve
to a steady (or very slowly evolving) state. The key point is that in unforced, ideal MHD
(see equations (1)–(3) below with �¼ �¼ 0 and f¼ 0) any state with u¼�b is an exact
steady solution. The remarkable fact that simulations of forced, non-ideal MHD
turbulence could evolve to something very close to such a state was first observed by
Archontis (2000) in his thesis, and published in Dorch and Archontis (2004) (hence
referred to as DA), and Archontis et al. (2007). These simulations use a compressible
code with a Kolmogorov forcing function, (4), first used as the form of a flow for
simulations of fast, kinematic dynamo action by Galloway and Proctor (1992).
Subsequently, Cameron and Galloway (2006a) undertook incompressible simulations
of the same system as Archontis, and pushed up the fluid and magnetic Reynolds
numbers; our work is linked closely to this article, which we refer to as CG in what
follows.

What these authors found was that, starting with a forced fluid flow and a seed
magnetic field, the growing magnetic field initially equilibrates in rough equipartition
with the velocity field, in a messy, chaotic time-dependent state. However during this
state, there is a slow but persistent exponential growth in the average alignment of the u
and b vectors, as measured by the cross-helicity. This process of alignment continues
until there takes place a sudden increase in the fluid and magnetic energies, and both
fields tend to a steady state of almost perfect alignment, discrepancies being controlled
by the weak dissipation and the forcing. In fact, since any solution u¼�b is a neutrally
stable solution of the ideal problem (Friedlander and Vishik, 1995), the solution that is
selected must depend delicately on balances involving these subdominant diffusive and
forcing effects. We note that some alignment of field and flow has been noted in many
other MHD flows, for example see Dobrowolny et al. (1980), Pouquet et al. (1986),
Mason et al. (2006) and references therein, but of a less dramatic nature.

This observation of dynamo saturation in a steady state with such a high degree of
alignment was a new phenomenon: CG refer to the saturated state as the ‘‘Archontis
dynamo’’, though we prefer the term ‘‘Archontis saturation mechanism’’. CG observed
this aligned state as a solution branch over a wide range of magnetic and fluid Reynolds
numbers (taking the magnetic Prandtl number to be unity in much of their work).
Further developments include the development of bursts of rapid time dependence after
some time in the steady state, in the study Archontis et al. (2007). However, this appears
to occur only in the compressible case, as it has neither been seen by CG nor in our
simulations; we will therefore not discuss this further. Cameron and Galloway (2006b)
also find slow time-dependent evolution of the saturated state for the Kolmogorov
forcing with magnetic Prandtl number Pr¼ �/� not equal to unity, and for more general
spatially periodic steady forcing. In all cases though, the field and flow settle into a state
of very close alignment, even if they then evolve on a slow time scale.

The focus of this article is to understand more about the structure of the steady
saturated state for the Kolmogorov forcing and unit magnetic Prandtl number Pr, with
a particular focus on the regions where dissipation occurs and on rigorous results on
existence and smoothness. DA and CG find a complex geometrical picture for the field
and flow and identify these regions of high dissipation: they are localised along straight-
line separatrices that join a family of stagnation points; similar structures are found in
the 1 : 1 : 1 ABC flow (Dombre et al. 1986). These are found to have a width scaling as

2 A. D. Gilbert et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
i
l
b
e
r
t
,
 
A
n
d
r
e
w
]
 
A
t
:
 
1
4
:
1
4
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



ffiffiffi
"
p

, where " is a dimensionless measure of the diffusivity, and one of our aims is to

understand this power law.
We set up the governing equations in section 2 and extend the solution branch to yet

smaller values of the diffusivity " by means of large-scale simulations in section 3.

In section 4 we then classify the symmetries of the Kolmogorov forcing, which are

preserved by the nonlinear, saturated field and flow. These symmetries are the reason

for the presence of the non-generic straight-line separatrices that join stagnation points

in the flow and field, and they constrain the local flow: it is in these regions that

dissipation is strongest. We plot the local structure of fields along the separatrix from

(0, 0, 0) to (�,�,�) in section 5. We determine the effects of diffusion by setting up PDEs

for the advection of field as it enters the dissipative regions in section 6 and use these

to justify the order
ffiffiffi
"
p

scaling for the cigar widths found in CG. We then proceed with a

formal mathematical investigation of the existence of steady-state solutions to the

MHD problem at hand and bounds for them in various function spaces in sections 7–9.

The reader should note that these sections use functional analysis and so have a

different flavour from the earlier ones. Finally, section 10 offers concluding discussion.

2. Governing equations

We begin with the dimensional equations for incompressible MHD, in the form

@tuþ u � ru ¼ b � rb� rpþ �r2uþ f, ð1Þ

@tbþ u � rb ¼ b � ruþ �r2b, ð2Þ

r � u ¼ r � b ¼ 0, ð3Þ

where � and � are the kinematic viscosity and magnetic diffusivity. We take f to be a

steady force of magnitude F acting on a length scale L. We will consider the

Kolmogorov forcing f¼F f*(r/L), whose dimensionless form is given by

f�ðrÞ ¼ ðsin z, sin x, sin yÞ: ð4Þ

In non-dimensionalising we only have the parameters {L,F , �, �}, together with the

form (4) of the forcing function. From these we can define a magnetic Prandtl

number and a Grashof number as in similar forced flow problems (see, e.g. Childress

et al. 2001) by

Pr ¼ �=�, Gr ¼ FL3=�2 � "�1: ð5Þ

We have as diagnostics the Reynolds number and magnetic Reynolds number given by

Re ¼ Lkuk=�, Rm ¼ Lkuk=�, ð6Þ

where kuk is a measure of the fluid velocity at a given time, for example the L2-norm,

taken as the root-mean-square value, averaged over the periodicity box. We rescale as

u ¼ Uu�, b ¼ Ub�, t ¼ ðL=UÞt�, r ¼ Lr�, f ¼ F f�, p ¼ U2p�, ð7Þ

Dissipative structures in a nonlinear dynamo 3
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with the choice of velocity scale

U ¼ FL
2=�: ð8Þ

This yields the non-dimensional formulation, dropping the stars, as

@tuþ u � ru ¼ b � rb� rpþ "r2uþ "f, ð9Þ

@tbþ u � rb ¼ b � ruþ "Pr�1r2b, ð10Þ

r � u ¼ r � b ¼ 0, ð11Þ

with f given in (4) and the only parameters specified are {", Pr}. The corresponding
Reynolds and magnetic Reynolds numbers are

Re ¼ "�1kuk, Rm ¼ "�1Prkuk: ð12Þ

We refer to "�1 as the Grashof number Gr and will be interested in the inviscid limit
"! 0. The Reynolds number and magnetic Reynolds number are diagnostics depending
on the flow regime realised.y Indeed, they change greatly during the saturation process,
when the fields align and kuk, kbk increase significantly. As in CG, the governing
equations may be written in a more symmetrical form in terms of Elsasser variables

,� ¼ u� b, ð13Þ

which gives, for Pr¼ 1,

@t,þ þ ,� � r,þ ¼ �rpþ "r
2,þ þ "f, ð14Þ

@t,� þ ,þ � r,� ¼ �rpþ "r
2,� þ "f, ð15Þ

r � ,þ ¼ r � ,� ¼ 0: ð16Þ

3. Numerical results

We undertook a number of runs to investigate the structure of the steady, equilibrated
Archontis dynamo for Pr¼ 1 and values of " down to 10�4 in the (2�)3 periodic
domain T

3. The steady solutions were found by following the solution branch: that is
taking the output from a runwith a given value of " and using it as the initial condition for
a run with a reduced value of ". This establishes the Archontis dynamo as a robust local
attractor, in the range of " used, in agreement with DA and CG. Whether it is a global
attractor over some or all sufficiently small values of " remains unknown, and extremely
difficult to address in view of the long transients that may occur. Our runs were
undertaken with a pseudo-spectral code using N3 modes with N¼ 128 for "¼ 0.02 and
0.01, N¼ 256 for "¼ 10�3 and N¼ 512 for "¼ 10�4. There were other, less well-resolved
runs with N¼ 128 for "¼ 10�3 and N¼ 256 for "¼ 10�4, which we refer to below as our
‘‘testing simulations’’. For comparison, CG go down to "¼ 1.25� 10�3 in their study,
with resolution 1283. Our results thus extend theirs by a little over a decade, and in this
section we present measures of the magnetic field and flow in the equilibrated state.

yOur formulation is equivalent to DA/CG, but our terminology is a little different. For example CG use the
parameters �CG� " and �CG� "Pr

�1, which they refer to as the inverse Reynolds and magnetic Reynolds
numbers, respectively.
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Numerical values are given in table 1 and plotted in figure 1. Figure 1(a) shows the

kinetic and magnetic energies in the equilibrated state, given by

EK ¼

Z
T
3

1

2
juj2 dV, EM ¼

Z
T
3

1

2
jbj2 dV: ð17Þ

These show an initial decrease with " (as in CG) but then a slight increase from "¼ 10�3

to "¼ 10�4: this is quite small bearing in mind the scale on the vertical axis, but appears

to be real as it is borne out in our test simulations. In all these runs EK4EM though

this is nither apparent from the numbers in table 1 nor in figure 1(a). Figure 1(b) shows

the enstrophy and integrated squared current, defined by

�K ¼

Z
T
3

1

2
jr � uj2 dV, �M ¼

Z
T
3

1

2
jr � bj2 dV: ð18Þ

The total dissipation is given by 2"�Kþ 2"�M and this tends to zero as O("), as does the
input of mechanical energy. Figure 1(c) shows the cross-helicity

HX ¼

Z
T
3
u � b dV ð19Þ

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.172

0.174

0.176

0.178

0.180

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.176

0.178

0.180

0.182

0.184

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.9980
0.9985
0.9990
0.9995
1.0000
1.0005
1.0010

1.5 2.0 2.5 3.0 3.5 4.0 4.5
–8
–7

–6

–5

–4

–3
–2

(a)

(c) (d)

(b)

Figure 1. Numerical results plotted against log10 "
�1. Plotted are (a) kinetic energy EK (4) and magnetic

energy EM (œ), (b) enstrophy �K (4) and squared current �M (œ), (c) normalised cross-helicity HX/(4EK

EMÞ
1=2, (d) energy log10E� of ,� (dotted line gives "2 dependence).

Table 1. Numerical results.

" N EK EM �K �M HX E�

0.02 64 0.1797 0.1745 0.1849 0.1791 0.3532 8.685� 10�4

0.01 64 0.1781 0.1765 0.1825 0.1816 0.3543 2.313� 10�4

0.001 256 0.1717 0.1717 0.1786 0.1789 0.3435 3.04� 10�6

0.0001 512 0.1722 0.1722 0.1787 0.1787 0.3443 3.55� 10�8

Dissipative structures in a nonlinear dynamo 5

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
i
l
b
e
r
t
,
 
A
n
d
r
e
w
]
 
A
t
:
 
1
4
:
1
4
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



in normalised form which rapidly tends to its theoretical upper bound of unity, within
the accuracy of our simulations, indicating the strong alignment of field as "! 0.
Finally, figure 1(d) shows the energy in the ,� Elsasser variable, where

E� ¼

Z
V

1

2
j,�j

2 dV � EK þ EM �HX: ð20Þ

This shows a rapid decrease to zero as "! 0 consistent with the scaling E�/ "
2 (dotted

line) in agreement with the discussion in CG and below.y
In figure 1(b) it is notable that the two curves, for enstrophy and total current

squared, cross between "¼ 0.01 and 0.001. The enstrophy �K is a little smaller than �M

for "¼ 10�3 and in fact is also so for 10�4 and in our test simulations, making us
confident that this is a real effect. This opens up the question of how we measure these
quantities, since the rate of evolution of the state becomes extremely slow for small ".
Figure 2(a) and (b) shows EK, EM, �K and �M as functions of time for the case "¼ 10�3

and N¼ 256: comparison with linear fits (dotted) shows clear curvature, as expected,
but also highlights the slow evolution. This suggests neutral stability of the final state,
and an expansion for any quantity in the form

A ¼ A0 þ A1t
�1 þ A2t

�2 þ � � � : ð21Þ

Although asymptotically the origin of time does not matter, we found it helpful to
choose an origin of time t0 (once per run) so as to obtain the best linear fit for quantities
in the form

A ’ A0 þ A1ðt� t0Þ
�1: ð22Þ

295 300 305 310 315 320 325

1.7232
1.7234
1.7236
1.7238
1.7240
1.7242
1.7244

295 300 305 310 315 320 325

1.793

1.794

1.795

1.796

5.4 5.6 5.8 6.0 6.2 6.4

1.7232
1.7234
1.7236
1.7238
1.7240
1.7242
1.7244

5.4 5.6 5.8 6.0 6.2 6.4

1.793

1.794

1.795

1.796

(a)

(c)

(b)

(d)

Figure 2. Numerical results for the case "¼ 10�3 with N¼ 256. Plotted are (a) 10EK (upper) and 10EM

(lower), (b) 10�K (lower) and 10�M (upper), against t/10. (c) and (d) are the same but plotted against
104/(t� 1400). In each panel dotted lines are linear fits.

yThe (downward) slope of a line fitting the data points is close to 1.9: the reason for the discrepancy is
unclear: it could be numerical, or the "2 power law may only emerge as "! 0 which is possible as there is some
downward curvature present in the data points.

6 A. D. Gilbert et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
i
l
b
e
r
t
,
 
A
n
d
r
e
w
]
 
A
t
:
 
1
4
:
1
4
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



We then use an estimate of the limiting value as A0; for example see figure 2 (c) and (d).
This was done for all the results in table 1.

One of the aims of this article is to focus on dissipative regions in the system: these
occur along a series of straight-line separatrices (DA/CG) and in figure 3, we show
colour plots of j,�j for a range of diffusivities. Clearly seen in each case, but especially
in (c) at the smallest ", are cross-sections of spiralling field, centred on the separatrices,
where small scales are generated with consequently enhanced diffusion.

4. Symmetries

We have seen that the dissipation tends to concentrate in cigar-shaped regions, with one
extending from (0, 0, 0) to the stagnation points at �(�, �, �). The reason these straight-
line separatrices are robust structures is linked to the symmetries of the forcing (4) and
also applies to the kinematic dynamo study by Galloway and Proctor (1992) of the
Kolmogorov flow

uKolðrÞ ¼ ðsin z, sin x, sin yÞ: ð23Þ

These symmetries turn out to be preserved by the solution (u, b) in the nonlinear regime:
there is no symmetry breaking. The forcing (4) is 2�-periodic in each coordinate: we
only consider symmetries up to this periodicity (and that do not reverse time). First note
that any map T maps a vector field u according to

ðTuÞðrÞ ¼ JT � uðT
�1rÞ, JT ¼ @r=@T

�1r: ð24Þ

It is then easily checked that the forcing f in (4) is preserved by the following 12
orientation-preserving symmetries, with det J¼ 1, which form the group A4 of even
permutations of 4 objects, or the symmetry group of the tetrahedron,

iðrÞ ¼ ðx, y, zÞ, a2ðrÞ ¼ ð�x,�� y, zþ �Þ,

b2ðrÞ ¼ ðxþ �,�y,�� zÞ, c2ðrÞ ¼ ð�� x, yþ �,�zÞ,

dðrÞ ¼ ðz, x, yÞ, d2ðrÞ ¼ ðy, z, xÞ,

eðrÞ ¼ ð�z,�� x, yþ �Þ, e2ðrÞ ¼ ð�� y, zþ �,�xÞ,

fðrÞ ¼ ðzþ �,�x,�� yÞ, f 2ðrÞ ¼ ð�y,�� z, xþ �Þ,

gðrÞ ¼ ð�� z, xþ �,�yÞ, g2ðrÞ ¼ ðyþ �,�z,�� xÞ:

ð25Þ

(a) (b) (c)

Figure 3. Cross-sections showing j,�j in the (x, y)-plane for z¼�/2. In (a) "¼ 10�2, (b) 10�3 and (c) 10�4

and the colour scale shown runs from zero (bottom) to (a) 0.031, (b) 0.0041 and (c) 0.00058 (top).
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These also form a subgroup of the group of 24 symmetries of the 1 : 1 : 1 ABC flow
(Arnold and Korkina 1983, Dombre et al. 1986), and the above follows the notation
in Gilbert (1992). The symmetries all commute with the inversion symmetry
j(r)¼ (�x,�y,�z) and so the full symmetry group of the forcing f is the direct product
A4�Z2.

5. Flow and field on the separatrices

The above symmetries constrain the behaviour of the magnetic field and flow on the
separatrices. Take, for definiteness, the separatrix joining (0, 0, 0) to (�, �, �) and call
this the ‘‘main separatrix’’ for brevity. Because of the symmetries d and d2 in (25) there
is a 3-fold rotational symmetry about this separatrix, as seen in DA/CG, and any vector
field on the separatrix can only point along the separatrix. We may introduce rotated
Cartesian coordinates via

�

�

�

0B@
1CA ¼ 1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0B@
1CA x

y

z

0B@
1CA, ð26Þ

with � along the separatrix. From there we may further define cylindrical polar
coordinates (�, 	, �), whose axis is � along the separatrix with �¼ � cos 	 and �¼ � sin 	.

Our aim now is to investigate more of the behaviour of the flow near to the
separatrix, in the saturated regime. However to fix ideas and establish a benchmark, we
consider first the Kolmogorov flow uKol in (23). For this flow it can be shown that on
the main separatrix motion is governed by

_� ¼
ffiffiffi
3
p

sinð�=
ffiffiffi
3
p
Þ, � ¼ � ¼ 0, ð27Þ

with solution

� ¼
ffiffiffi
3
p
ð�� cos�1 tanh tÞ: ð28Þ

Here � tends to zero as t!�1 and to
ffiffiffi
3
p
� as t!1. Near to the separatrix, the radial

coordinate �� 1 and the flow field may be expanded in powers of �. In view of the
3-fold rotational symmetry, the flow u is axisymmetric about the main separatrix �¼ 0
at leading order and streamlines are given by

_� ¼ �s0ð�Þ�þOð�2Þ, _	 ¼ �ð�Þ þOð�Þ, _� ¼ 2sð�Þ þOð�2Þ, ð29Þ

with

2sKolð�Þ ¼
ffiffiffi
3
p

sinð�=
ffiffiffi
3
p
Þ, 2�Kolð�Þ ¼

ffiffiffi
3
p

cosð�=
ffiffiffi
3
p
Þ: ð30Þ

Trajectories spiral in for �’ 0 and spiral out for � ’
ffiffiffi
3
p
�. On the separatrix itself

u¼ (0, 0, 2s(�)) and r� u¼ (0, 0, 2�(�)), directed along the axis.
Now in the nonlinear, equilibrated regime, the symmetries of the system are observed

to be preserved and so the motion near and along the separatrix is given by (29) for
some functions s(�) and �(�). These functions characterise aspects of the nonlinear
saturation on the separatrices and so of the spiral dissipative structures that form there,

8 A. D. Gilbert et al.
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visible in figure 3. We can measure the equivalent functions for any field, and in our

runs we find that the traces for 2u, 2b and ,þ are identical to graphical accuracy.

In figure 4(a) we show the components of ,þ along the separatrix (separated by

constants). This figure in fact depicts two separatrices, the main separatrix from (0, 0, 0)

to (�,�,�) and the next one that continues to (2�, 2�, 2�), with 0 	 � 	 2
ffiffiffi
3
p
�. The

components of ,þ show a sinusoidal form in keeping with the property of the

equilibrated fields noted by CG, namelyy

,þ ’ uKol: ð31Þ

There is only slight steepening at (�,�,�) as " is reduced. Figure 4(b) shows traces of the
components of r�,þ with clear cosine form, in keeping with (31) and (30) but of

somewhat enhanced amplitude, and with evidence of some finer scale structure near

(�,�,�). These indicate that the approximation (31) is reasonable for the leading order

fields on the separatrices.
The picture is naturally more complicated for the �� field, which tends to zero in the

limit of small ". Figure 4(d), (e) and (f) plots the components of "�1,� along the

separatrix: there is clear evidence of finer scale oscillations emerging in the limit, but

the nature of the limiting distribution is unclear. Figure 4(c) shows the fields "�1/2r�,�
(separated by constants). These show the development of a cusp at (�,�,�), the

stagnation point where the two separatrices converge. In conclusion, the field ,� on the

separatrix scales as O("), but its curl scales as O("1/2), giving a natural O("1/2) cigar

width length scale, confirming results in CG and to be explored further below.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Plot of components of fields against � for runs with "¼ 0.02, 0.01, 10�3 and 10�4 for (a) the field
,þ, reading down the curves (separated by adding 0, �0.1, �0.2, etc.), (b) the field r�,þ, reading down
the curves, (c) the field "�1/2 r�,�, reading down the curves (separated by adding 0, �0.25, �0.5, etc.) and
(d, e, f) the field "�1�� for " equal to (d) 0.01, (e) 10�3 and (f) 10�4.

yAs noted by CG, although this is a good approximation, the error does not go to zero with " (e.g.
kj,þ� uKoljk1/kj,þjk1 remaining at a level of about 15% for all runs) and so (31) should not be seen as an
asymptotic statement.
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6. Local behaviour and scaling in the cigars

We now have some knowledge of the local structure of the flow and field on the

separatrices, in terms of both the general form it must take, namely (29), and the actual

behaviour for small values of " in figure 4. The aim of this section is to derive the

dissipative length scale of
ffiffiffi
"
p

noted by CG. Of course we are not able to put together a

solution that is complete: the dissipative, cigar-like regions process field that is drawn

in, in a spiralling fashion, and then churn it out again. A complete picture would involve

matching to the outer region, which is a highly three-dimensional problem, beyond

what we can do; nonetheless, a local picture gives some information.

6.1. Uncurling the induction equation

We start with the formulation in Elsasser variables (13)–(16) and for brevity set

, � ,þ, "j � ,�, p! "p: ð32Þ

We assume the key scaling of CG that j¼O(1), at least in the outer region, which

means away from the stagnation points and the separatrices. Without approximation,

the steady equations are

j � r, ¼ �rpþ r2,þ f, ð33Þ

, � rj ¼ �rpþ "r2jþ f: ð34Þ

Note that a straightforward estimate of the width of a diffusive layer based on (34)

would suggest an order " scaling from balancing , � rj
 "r2j, but this is too small, as

it does not take into account the different scales of variation of j along and across the

characteristics of ,, and the following, more delicate argument is needed.
Subtracting (34) from (33) gives an equation equivalent to the induction

equation (10),

0 ¼ r � ðj� ,Þ þ r2,� "r2j, ð35Þ

which may be uncurled as

ra ¼ j� ,� r � ,þ "r � j, ð36Þ

where a(r) is a scalar field. Taking the divergence gives an elliptic equation for a,

r2a ¼ r � ðj� ,Þ: ð37Þ

This development can be pursued further, to obtain a general closed but complicated

system of scalar PDEs that link the field and flow to the external forcing, as in

Zheligovsky (2009). However, our present aims are more limited: we only need that (36)

is equivalent to two equations, i.e.

, � ra ¼ �, � r � ,þ ", � r � j ð38Þ

and

j ¼ c,þ��2,� ðraþ r � ,� "r � jÞ, ð39Þ

10 A. D. Gilbert et al.
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where c(r) is another scalar field which obeys

, � rc ¼ �r � ½��2,� ðraþ r � ,� "r � jÞ�, ð40Þ

from requiring that r � j¼ 0. Everything is exact up to this point but we note that this

representation will generally break down at isolated points where ,¼ 0.
Now we approximate: first consider an ‘‘outer’’ region, well away from the

dissipative, cigar-like structures that lie on the separatrices joining stagnation points.

We neglect diffusion in the outer region, the fields having a greater length scale. The

leading order outer problem is obtained by simply setting "¼ 0 in the above equations

(38)–(40), leaving a pair of quasi-linear equations for a and c giving transport along

characteristics of ,, namely

, � ra ¼ �, � r � ,, ð41Þ

, � rc ¼ �r � ½��2,� ðraþ r � ,Þ�, ð42Þ

together with an equation that then reconstructs j, from (39), which we write as a sum

of three terms,

j ¼ jc þ ja þ j,, ð43Þ

with

jc ¼ c,, ja ¼ ��2,�ra, j, ¼ ��2,� ðr � ,Þ: ð44Þ

Finally for this section, we note that in the outer region, jc can be calculated

explicitly in terms of , and a. Substitution of (44) into (34), where the diffusive term

involving " is neglected, yields

r � ð, � rÞ c,þ��2,� ðraþ r � ,Þ
� �� �

¼ r � f: ð45Þ

By virtue of (42), this equation takes the form

rc� ð, � rÞ,þ cr � ðð, � rÞ,Þ ¼ r � F, ð46Þ

where

F � ,r � ½��2,� ðraþ r � ,Þ� � ð, � rÞ½��2,� ðraþ r � ,Þ� þ f: ð47Þ

Scalar multiplication of (46) by (, � r), yields

c ¼
ðr � FÞ � ð, � r,Þ

½r � ð, � r,Þ� � ½, � r,�
: ð48Þ

Thus singularities of c can arise, where the helicity type term involving (, � r), (i.e. the

denominator in (48)) vanishes.

6.2. Field in the outer region, near the main separatrix

In the outer region, as the main separatrix is approached, it is observed that the field ,
is relatively smooth, as seen from the numerical simulations of CG, and also in view of

the leading order Laplacian in (33), whereas j develops fine scales. Using the

Dissipative structures in a nonlinear dynamo 11
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formulation in (29) from now on we define s(�) and �(�) by

, ¼ ð�s0ð�Þ�,�ð�Þ�, 2sð�ÞÞ þOð�2Þ, ð49Þ

in cylindrical polar coordinates (�, 	, �) defined in (26) and below. Here the functions
2sð�Þ=

ffiffiffi
3
p

and 2�ð�Þ
ffiffiffi
3
p

defined for , are shown in Figure 4(a) and (b) and are not
known analytically. Nonetheless, their functional form is similar to that of the
Kolmogorov flow (30).

To understand the diffusive O("1/2) scaling in the cigars and to determine something
of the local structure of the fine-scaled j field the following strategy is adopted: solve
the equations (41) and (42) by integrating along characteristics of , given locally by (49)
and reconstruct j via (44). As the characteristics of , approach the origin and are
squeezed along the outgoing separatrix, given by �¼O(1), �¼ 0, high gradients build
up and the terms in " that were earlier neglected increase: when these come into balance
with the terms we have retained, we reach the scale at which diffusive effects become
important, fixing the width of the dissipative regions.

There are two problems with this approach: first that the incoming values of a and c
are determined by the outer solution and links to other cigars. As this is beyond what
can be addressed analytically, unknown functions have to be introduced. Secondly,
even with the simplified, general local form (49), analytical calculations rapidly become
unwieldy. The first problem will remain with us, but to ameliorate the second problem
we simplify further and consider only the motion near to the origin, in which we simply
take the field , to be, exactly,

, ¼ ð�
�,!�, 2
�Þ, ð50Þ

in the local cylindrical polar coordinate system (�,�, �). Here 
 and ! are taken as
constants, which we may identify as


 ¼ s0ð0Þ, ! ¼ �ð0Þ: ð51Þ

We also note from (50) that

r � , ¼ ð0, 0, 2!Þ, �2 ¼ ð!2 þ 
2Þ�2 þ 4
2�2 ¼ 4
2�2 þOð�2Þ: ð52Þ

Our strategy now is to solve the outer, diffusionless equations (41)–(42) for transport
of a and c for the simplified form (50) of ,. This is done exactly, but then to see how
large the neglected, diffusion terms are, we approximate by taking �¼O(1) but �� 1,
so our results are valid in the outer region, near to the origin, on the outward-going
separatrix, as depicted schematically in figure 5. Of course, by the time �¼O(1) we are,
strictly speaking, away from the stagnation point at the origin and the form (50) that we
are using no longer applies. However the above form is sufficient to obtain the overall
structure of the outer solution as the separatrix is approached, together with the scaling
of the diffusive layer width.

ρ

ρ= ρ
0

z

Figure 5. Schematic figure showing the flow in the (�, 	, �) coordinates.

12 A. D. Gilbert et al.
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Equation (41) becomes

, � ra ¼ �4!
�, ð53Þ

and letting t be a time parameter along characteristics, we integrate this in the standard
way, with

_� ¼ �
�, _	 ¼ !, _� ¼ 2
�, _a ¼ �4!
�, ð54Þ

and the solution in terms of initial conditions on a characteristic,

� ¼ �0e
�
t, 	 ¼ 	0 þ !t, � ¼ �0e

2
t, a ¼ a0 þ 2!�0ð1� e2
tÞ: ð55Þ

If we suppose that we specify the incoming values of a on a surface �¼ �04 0 (see
figure 5) with

a0 ¼ að�0, 	0, �0Þ ¼ Að	0, �0Þ ð56Þ

at t¼ 0, then we have the solution:

að�, 	, �Þ ¼ A½	 þ 
�1! logð�=�0Þ, ��
2=�20� þ 2!�ð�2=�20 � 1Þ: ð57Þ

Here A gives the form of the field being carried in from the outer region, and we do not
know much about it, except that it has 3-fold rotational symmetry (see figure 3 and
figure 13 of CG). It is perhaps helpful to think of A as being some function of order
unity with the appropriate symmetry, for example A¼A0þA3 cos 3	.

Given a we can now reconstruct the appropriate part of j in (44). We have

ra ¼ ð!
�1��1A	 þ 2����20 ðA� þ 2!Þ, ��1A	, �
2��20 A� þ 2!ð�2��20 � 1ÞÞ

¼ 
�1��1ð!A	, 
A	,�2!
�Þ þOð�Þ, ð58Þ

and so

ja � ��2,�ra ¼ 2��2ð�
,!, 0Þ���1A	 þOð�0Þ, ð59Þ

as �! 0, where A	 denotes the derivative of A with respect to its first argument. Here,
we have obtained a component growing as ��1 which arises because of the incoming
values of A on different characteristics being squeezed together.

6.3. The effect of diffusive terms

With this component of j in hand, we can now revisit the diffusive equation (38). We
calculate

r � ja ¼ 2��2ð!2 þ 
2Þð0, 0, 
�1Þ���2A		 þOð��1Þ, ð60Þ

and

, � r � ja ¼ 4��2ð!2 þ 
2Þ�2��2A		 þOð��1Þ: ð61Þ

This now has a ��2 growth, by virtue of differentiating A again. In equation (38) it is
clear that the final ", � r� ja term with diffusion will be the same order as the term
, � r�,¼ 4!
� we originally included, when "��2¼O(1). This gives the � ¼ Oð

ffiffiffi
"
p
Þ

scaling of the diffusive cigar width. Similarly at these values of �, in (39) and (40) the

Dissipative structures in a nonlinear dynamo 13
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terms "r� ja become of similar magnitude to r�, (though note here that the ra
terms are actually larger in magnitude at this point).

This is the main part of the argument: although we have simplified by focusing solely
on ja in (44), consideration of the scalar c and component jc does not affect the
discussion, nor does j,, given straightforwardly by

j, � ��2,� ðr � ,Þ ¼ 2��2!ð!, 
, 0Þ� ð62Þ

and so negligible. To check this, we now look at the "¼ 0 equation (42) for c and the
corresponding component jc. After a straightforward calculation (42) becomes

, � rc ¼ �12��4
ð!2 þ 
2Þ�A	 þOð�Þ: ð63Þ

The key point is that the right-hand side is of order unity as �! 0, as was the case for a
in (53). Thus without solving the equation in detail, it is clear that the solution
analogous to (57) for a will take the form

cð�, 	, �Þ ¼ C ½	 þ !
�1 logð�=�0Þ, ��
2=�20� þ CPIð�, 	, �Þ, ð64Þ

where C(	0, �0) gives the incoming values of c on the surface �¼ �0, as before and the
particular integral CPI involves A but is of order unity as �! 0.

Now when we reconstruct j via (44), the component c,¼O(1) along streamlines will
be subdominant to the component ,�ra¼O(��1), the inverse power of � arising from
taking the gradient. Thus, our focus on ja in the above discussion of the diffusive
breakdown of the outer solution is justified and we have

j ¼ ja þOð1Þ ¼ 2��2ð�
,!, 0Þ���1A	 þOð1Þ, ð65Þ

as �! 0 on the outgoing separatrix. As a by-product of our calculations we observe
that the small-scale field j will show components ja perpendicular to streamlines that
diverge as ��1 as the separatrix is approached from the outer solution. These will peak
at levels j¼O("�1/2) when diffusive suppression begins to occur at scales � ¼

ffiffiffi
"
p

. This
is in keeping with the scalings seen by CG, who note that ,� ¼ "j ¼ Oð

ffiffiffi
"
p
Þ near the

separatrices (their section 3.2.1, figures 13 and 16). In view of the cos 3	 dependence of
the leading field identified here, this component must go to zero on the axis itself and is
presumably strongly suppressed by diffusion. Thus we cannot make a detailed link with
figure 4: the field here originates with the mean component of A, independent of 	, for
which the onset of diffusion will be delayed until smaller values of �. This also
presumably explains the structure seen in figure 3 (most clearly in 3b) or figure 13 of
CG, with three incoming sheets of field merging in an axisymmetric ‘‘collar’’ at smaller
values of �. In this way, there could be several nested boundary layers along the
separatrices in the limit "! 0.

7. Existence of weak steady-state solutions

We now consider the system of equations (33) and (34) in Elsasser variables, together
with the solenoidality conditions

r � j ¼ r � , ¼ 0: ð66Þ

14 A. D. Gilbert et al.
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In this section we define weak solutions to these equations and formally prove their
existence, adapting the approach of Ladyzhenskaya (1969). In the next two sections, we
will show that the weak solutions are classical smooth functions, satisfying the
equations at any point in space.

We start by recalling some definitions. Consider the class of functions whose domain
is the periodicity cell T3

� [0, 2�]3. The norm in the Lebesgue space Lp(T
3) is defined, for

p� 1, as

k(kp �

Z
T
3
j(jp dV

� �1=p

: ð67Þ

Since in the above-mentioned class I �r2 is a positive definite self-adjoint operator
(where I is the identity), whose eigenfunctions are Fourier harmonics, we can define in
the usual way the powers (I �r2)� for an arbitrary real �, by considering Fourier series.
For r 2 R3 and any

( ¼
X
n

(n e
in�r, ð68Þ

ðI � r2Þ
�( �

X
n

ð1þ jnj2Þ�(n e
in�r: ð69Þ

The Sobolev space Ws
pðT

3
Þ is defined for p� 1 as the closure in the norm

k(ks, p � kðI � r
2Þ

s=2(kp ð70Þ

of the set of infinitely smooth periodic functions, whose domain is T
3. (Evidently,

LpðT
3
Þ ¼W0

pðT
3
Þ.) We will work in the subspace of zero-mean vector fields, in which

the operator �r2 can be used instead of I �r2 in these definitions. In particular, we
define (without introducing a new notation) a norm, equivalent to (70), in the subspace
of zero-mean fields in Ws

pðT
3
Þ as

k(ks, p � kð�r
2Þ

s=2(kp: ð71Þ

Since the Laplacian is a self-adjoint operator, in the important particular case p¼ 2 this
implies,

k(k2s, 2 ¼

Z
T
3
( � ð�r2Þ

s( dV: ð72Þ

We will employ the following theorem:

Embedding theorem (Bergh and Löfström (1976), Taylor (1981) and the references
therein).

(i) For s4N/p, Ws
pðT

3
Þ 
 CðT3

Þ.
(ii) For 05 s5N/p and q¼Np/(N� ps), Ws

pðT
3
Þ 
 LqðT

3
Þ (in particular,

k(kq	Cs,pk(ks,p).

We will show in the remainder of this section that for any space-periodic forcing f

from the Lebesgue space L2(T
3), the system of equations (33), (34) and (66) has at least

one weak space-periodic solution from the Sobolev space W1
2ðT

3
Þ. The assumption that

the box of periodicity is the cube T
3
� [0, 2�]3 is technical: our arguments can be

repeated almost literally for the case of an arbitrary parallelepiped of periodicity. Note

Dissipative structures in a nonlinear dynamo 15
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that in this and the following sections, we do not restrict ourselves to the Kolmogorov

forcing (4); higher regularity of f will be required in section 9.
Consider then, the set of infinitely smooth solenoidal zero-mean periodic functions,

whose domain is the periodicity cell T
3
� [0, 2�]3, and denote by H its closure in the

Sobolev space W1
2ðT

3
Þ. A pair of vector fields , 2 H, j 2 H is a weak solution to the

system (33), (34) and (66), if the integral identitiesZ
T
3

X3
k¼1

@,

@xk
�
@(

@xk
þ ððj � rÞ,� f Þ �(

 !
dV ¼ 0 ð73Þ

and Z
T
3
"
X3
k¼1

@j

@xk
�
@(

@xk
þ ðð, � rÞj� f Þ �(

 !
dV ¼ 0 ð74Þ

hold true for any vector field ( 2 H. (If , and j are smooth, these identities

immediately follow from (33) and (34).) By Hölder’s inequality and the embedding

theorem, for any function f2W1
2ðT

3
Þ,

k f k4 	 k f k
1=4
2 k f k

3=4
6 	 C1k f k

1=4
2 k f k

3=4
1, 2 	 C1k f k1, 2, ð75Þ

where C1 is a constant independent of f. Consequently, the Cauchy–Bunyakowsky–

Schwarz inequality implies that the integrals involving nonlinear terms admit the boundsZ
T
3
ððj � rÞ,Þ �( dV

				 				 ¼ Z
T
3

X3
k¼1


k, �
@(

@xk
dV

					
					

	
X3
j¼1

X3
k¼1

k
kk4k�jk4
@�j

@xk





 




2

	 C2kjk1, 2k,k1, 2k(k1, 2, ð76Þ

C2 being a constant independent of j, , and (, and similarlyZ
T
3
ðð, � rÞjÞ �( dV

				 				 	 C2kjk1, 2k,k1, 2k(k1, 2: ð77Þ

Thus the integrals are well-defined.
Consider the scalar product in H

½(1,(2� �

Z
T
3

X3
k¼1

@(1

@xk
�
@(2

@xk
dV: ð78Þ

Integrating by parts we recast the identities (73) and (74) in an alternative form

involving the scalar product (78):

½,�Aðj,,Þ �ef,(� ¼ 0, ð79Þ

and

½"j�Að,, jÞ �ef,(� ¼ 0: ð80Þ

16 A. D. Gilbert et al.
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Here

ef ¼ �ðr2Þ
�1f, ð81Þ

(r2)�1 denoting, as usual, the inverse Laplacian, and

Aðj,,Þ � ðr2Þ
�1
Pððj � rÞ,Þ ð82Þ

is a bilinear operator, where P is the projection onto the subspace of solenoidal vector

fields. (In fact, for the Kolmogorov forcingef ¼ f, but in what follows we do not employ

this equality.)
Using (72) for s¼ 1, we find

kAðj,,Þk21, 2 ¼ �

Z
T
3
Pððj � rÞ,Þ � ðr2Þ

�1
Pððj � rÞ,ÞdV

¼
X3
j¼1

X3
k¼1

Z
T
3

k, � ðr

2Þ
�1
P

@2

@xj@xk
ð
j,Þ

� �
dV: ð83Þ

For any

( ¼
X
n 6¼0

(n e
in�r, ð84Þ

ðr2Þ
�1
P

@2

@xj@xk
(

� �
¼
X
n6¼0

(n �
(n � n

jnj2
n

� �
njnk

jnj2
ein�r, ð85Þ

and therefore

ðr2Þ
�1
P

@2

@xj@xk
(

� �



 




2

	 k(k2: ð86Þ

Now we develop (83), using Hölder’s inequality and the embedding theorem,

kAðj,,Þk21, 2 	
X3
j¼1

X3
k¼1

X3
l¼1

k
kk4k�lk4k
j,k2 	 C3kjk
2
1, 2k,k

2
1, 2, ð87Þ

which demonstrates that A :H�H!H.
Thus, we have shown that for , 2 H and j 2 H the first factors in the scalar

products in the right-hand sides of (79) and (80) belong toH. Since smooth vector fields

are dense in H in the norm induced by the scalar product [�, �], (79) and (80) are

equivalent to equations

,�Aðj,,Þ �ef ¼ 0 ð88Þ

and

j� "�1ðAð,, jÞ þefÞ ¼ 0, ð89Þ

respectively, understood as equalities in H.
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The existence of solutions to the system (88), (89) is guaranteed by the Leray–

Schauder principle (Leray and Schauder 1934, Ladyzhenskaya 1969) under two

conditions:

(i) The operator B :H�H!H�H defined as

Bð,, jÞ ¼ ðAðj,,Þ,Að,, jÞ="Þ ð90Þ

is compact, i.e. B(,n, jn) is a strongly converging sequence in H�H for any

sequence (,n, jn) weakly converging in H�H.
(ii) Any solution to the set of equations

,� �ðAðj,,Þ þefÞ ¼ 0, j� �"�1ðAð,, jÞ þefÞ ¼ 0 ð91Þ

belongs to a ball in H�H of a radius independent of � for 0	�	 1.

The proof of (i) relies on the embedding theorem for Sobolev spaces, whereby the

embedding W1
2ðT

3
Þ ! LqðT

3
Þ is compact for q5 6, i.e., kjn� jmkqþk,

n
�,m

kq! 0

for m, n!1, for any sequence (jn,,n) weakly converging in W1
2ðT

3
Þ �W1

2ðT
3
Þ. It is

enough to prove that A(jn,,n) converges strongly in H. For any ( 2 H,

½Aðjn,,n
Þ � Aðjm,,m

Þ,(� ¼

Z
T
3

X3
k¼1

ð
nk,
n
� 
mk,

m
Þ �
@(

@xk
dV ð92Þ

¼

Z
T
3

X3
k¼1


nkð,
n
� ,m

Þ �
@(

@xk
dV

þ

Z
T
3

X3
k¼1

ð
nk � 

m
k Þ,

m
�
@(

@xk
dV: ð93Þ

Hence, by the same arguments as those that were used to derive (76), we obtain

k½Aðjn,,n
Þ � Aðjm,,m

Þ,(�k1, 2 	 C4ðkj
n
k1, 2k,

n
� ,m

k4 þ kj
n
� jmk4k,

m
k1, 2Þk(k1, 2:

ð94Þ

Here ( 2 H is arbitrary; letting (¼A(jn,,n)�A(jm,,m), from this inequality we

deduce

kAðjn,,n
Þ � Aðjm,,m

Þk1, 2 	 C5ðk,
n
� ,m

k4 þ kj
n
� jmk4Þ, ð95Þ

where the constant C5 is independent of m and n, since weak convergence of (jn,,n) in

W1
2ðT

3
Þ �W1

2ðT
3
Þ implies the uniform boundedness of kjnk1,2 and k,n

k1,2. Thus we

have established that kA(jn,,n)�A(jm,,m)k1,2! 0 for m, n!1, as desired.
To prove (ii), we consider the problem (91) in the form of integral equations,

analogous to (73) and (74),Z
T
3

X3
k¼1

@,

@xk
�
@(

@xk
þ �ððj � rÞ,� f Þ �(

 !
dV ¼ 0, ð96Þ

Z
T
3

X3
k¼1

@j

@xk
�
@(

@xk
þ
�

"
ðð, � rÞj� f Þ �(

 !
dV ¼ 0, ð97Þ
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which are satisfied for any ( 2 H. Let (¼, in (96) and (¼ j in (97). Due to

solenoidality of j and , the nonlinear terms vanish, and we find from the identities (96)

and (97) that

½,,,� ¼ �

Z
T
3
f � ,dV 	 �C6k,k2kfk2 ) k,k1, 2 	 �C7kfk2, ð98Þ

½j, j� ¼ �"�1
Z

T
3
f � j dV 	 �"�1C6kjk2kfk2 ) kjk1, 2 	 �"

�1C7kfk2, ð99Þ

since the norm, induced by the scalar product [�, �] inH, is equivalent to the norm (72) in

W1
2ðT

3
Þ. These inequalities establish the existence of a weak solution , 2 H, j 2 H to

the problem (33), (34) and (66), admitting the bounds

k,k1, 2 	 C7kfk2, kjk1, 2 	 C7"
�1kfk2: ð100Þ

Here the constant C7 is absolute, independent of the solution , and j, the forcing f,

and the parameter ".

8. Bounds for weak solutions in W2
2ðT

3
Þ

In this section we obtain bounds for the norms of the weak solution, whose existence we

have established in the previous section, in the Sobolev spaces W5=4
2 ðT

3
Þ and W2

2ðT
3
Þ.

The forcing f here is assumed to belong to the Lebesgue space L2(T
3), as in the

previous section.
Consider the Fourier series

, ¼
X
n 6¼0

,n e
in�r, ð101Þ

and smooth vector fields

,M
¼

X
n6¼0, jnj	M

,n e
in�r 2H: ð102Þ

Scalar multiplying in L2(T
3) (88) by (�r2)5/4,M

2 H, using self-adjointness of the

Laplacian, solenoidality of , and hence of ,M, and orthogonality of potential and

solenoidal fields in L2(T
3), we obtainZ

T
3
, � ð�r2Þ

5=4,M dVþ

Z
T
3
ðj � rÞ, � ð�r2Þ

1=4,M dV ¼

Z
T
3

ef � ð�r2Þ
5=4,M dV: ð103Þ

Note that

kð�r2Þ
1=4
ðð�r2Þ

1=4,M
Þk2 ¼ k,

M
k1, 2 	 k,k1, 2, ð104Þ

and hence ð�r2Þ
1=4,M

2W1=2
2 ðT

3
Þ, and by part (ii) of the theorem

kð�r2Þ
1=4,M

k3 	 C1=2, 2k,k1, 2: ð105Þ
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This, together with (100), implies a bound for the first integralZ
T
3
ðj � rÞ, � ð�r2Þ

1=4,M dV

				 				 	 kjk6kr,k2kð�r2Þ
1=4,M

k3

	 C1=2, 2k,k
2
1, 2kjk1, 2 	 C8=": ð106Þ

Also, Z
T
3

ef � ð�r2Þ
5=4,M dV

				 				 	 k,k1, 2kð�r2Þ
3=4efk2 	 C9, ð107Þ

and hence we find from the identity (103)

kð�r2Þ
5=8,k22 ¼ sup

M

Z
T
3
, � ð�r2Þ

5=4,M dV 	 C10"
�1: ð108Þ

Similarly, (89) yields

kð�r2Þ
5=8jk22 	 C10"

�3: ð109Þ

(The constant C10 in (108) and (109) is independent of "	 1, but depends on the norm
kfk2 of the forcing f 2 L2(T

3).) We have therefore demonstrated that j2W5=4
2 ðT

3
Þ and

,2W5=4
2 ðT

3
Þ.

Consequently, ð�r2Þ
1=2,2W1=4

2 ðT
3
Þ and ð�r2Þ

1=2,2W1=4
2 ðT

3
Þ. Using part (ii) of the

theorem, we find

k@,=@xkk12=5 	 C1=4, 2kð�r
2Þ

1=8
ð@,=@xkÞk2 	 C1=4, 2kð�r

2Þ
5=8,k2 ð110Þ

and

k,k12 	 C5=4, 2kð�r
2Þ

5=8,k2: ð111Þ

Similarly,

k@j=@xkk12=5 	 C1=4, 2kð�r
2Þ

5=8jk2, kjk12 	 C5=4, 2kð�r
2Þ

5=8jk2: ð112Þ

Scalar multiplying in L2(T
3) (88) by (�r2)2,M, we obtain

kð�r2Þ,M
k22 þ

Z
T
3
ðj � rÞ, � ð�r2Þ,M dV ¼

Z
T
3

ef � ð�r2Þ
2,M dV: ð113Þ

By Hölder’s inequality,Z
T
3
ðj � rÞ, � ð�r2Þ,M dV

				 				 	 kjk12kr,k12=5kð�r2Þ,M
k2 ð114Þ

and hence from (110), (112) and (113)

kð�r2Þ,M
k2 	 C11kð�r

2Þ
5=8jk2kð�r

2Þ
5=8,k2 þ kfk2 ð115Þ

whereby

kð�r2Þ,k2 ¼ sup
M
kð�r2Þ,M

k2 	 C12"
�2: ð116Þ

The same operations applied to (89) yield

kð�r2Þjk2 	 C12"
�3: ð117Þ

20 A. D. Gilbert et al.
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Thus we have demonstrated that j and , belong to W2
2ðT

3
Þ. The constant C12 in (116)

and (117) is independent of the solution ,, j and the small parameter ", but depends on
the norm kfk2 of the forcing f 2 L2(T

3).

9. Smoothness of weak solutions

Steady-state hydrodynamic and MHD problems are drastically different from the
evolutionary ones in that one can incrementally establish the smoothness of their
solutions together with the derivatives of arbitrary order (provided the forcing f is
sufficiently smooth). In this section we use (88) and (89) to show by induction that j and
,, whose existence we have ascertained in section 7, are in fact smooth vector fields and
therefore constitute a classical space-periodic solution to equations (33), (34) and (66).

We assume now that j2W2k
2 ðT

3
Þ and ,2W2k

2 ðT
3
Þ (which is equivalent to

k(�r2)kjk2þk(�r
2)k,k251) and f2W2k

2 ðT
3
Þ for some k� 1, and show that

j2W2kþ2
2 ðT

3
Þ and ,2W2kþ2

2 ðT
3
Þ.

Scalar multiplying in L2(T
3) (88) by (�r2)2kþ1,M, using self-adjointness of the

Laplacian, solenoidality of ,M and orthogonality of potential and solenoidal fields in
L2(T

3), we obtainZ
T
3
, � ð�r2Þ

2kþ1,M dVþ
X3
j¼1

Z
T
3
ð�r2Þ

k�1 @

@xj
ðj � rÞ,

� �
�ð�r2Þ

k @,
M

@xj
dV

¼

Z
T
3
ð�r2Þ

k�1=2f � ð�r2Þ
kþ1=2,M dV, ð118Þ

and thus

kð�r2Þ
kþ1=2,M

k22

	

 X3
j¼1

ð�r2Þ
k�1 @

@xj
ðj � rÞ,





 




2

þkð�r2Þ
k�1=2fk2

!
kð�r2Þ

kþ1=2,M
k2 ð119Þ

implying

k,k2kþ1, 2 ¼ sup
M
kð�r2Þ

kþ1=2,M
k2 	

X3
j¼1

ð�r2Þ
k�1 @

@xj
ðj � rÞ,





 




2

þkfk2k�1, 2: ð120Þ

We therefore need to check that the norms in the sum on the right-hand side of this
inequality are bounded. By part (i) of the theorem, the assumption j2W2k

2 ðT
3
Þ and

,2W2k
2 ðT

3
Þ implies that j and , and their derivatives of order up to 2k� 2 are

continuous (and hence uniformly bounded) vector fields in T
3. By the standard formula

for derivatives of products,

ð�r2Þ
k�1 @

@xj
ðj � rÞ, ð121Þ

is a linear combination of products of derivatives

@N1
q

@n
1
1x1@

n1
2x2@

n1
3x3

@N2,

@n
2
1x1@

n2
2x2@

n2
3x3

, ð122Þ
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where Ni ¼ ni1 þ ni2 þ ni3, 0	N1	 2k� 1, N2¼ 2k�N1. Thus, each of the terms is

continuous and bounded, except maybe those for N1¼ 0, 1 or 2k� 1. If N1¼ 0, or

N1¼ 1 or 2k� 1 for k4 1, one of the factors is continuous and the second one is known

to belong to L2(T
3), and hence their contributions to the right-hand side of (120) are

finite. The remaining possibility is k¼N1¼N2¼ 1, but in this case both factors belong

to L4(T
3) because j2W2

2ðT
3
Þ and ,2W2

2ðT
3
Þ by the results of the previous subsection,

and again the respective norms are bounded.
We have thus established that ,2W2kþ1

2 ðT
3
Þ. By similar arguments from (89) we find

j2W2kþ1
2 ðT

3
Þ. To proceed, we scalar multiply in L2(T

3) (88) by (�r2)2kþ2,M, and

obtain Z
T
3
, � ð�r2Þ

2kþ2,M dVþ

Z
T
3
ðð�r2Þ

k
ðj � rÞ,Þ � ð�r2Þ

kþ1,M dV

¼

Z
T
3
ð�r2Þ

kf � ð�r2Þ
kþ1,M dV, ð123Þ

and therefore

k,k2kþ2, 2 ¼ sup
M
kð�r2Þ

kþ1,M
k2 	 kð�r

2Þ
k
ðj � rÞ,k2 þ kfk2k, 2: ð124Þ

Since ,2W2kþ1
2 ðT

3
Þ and j2W2kþ1

2 ðT
3
Þ, by part (i) of the theorem any derivative of ,

and j of order up to 2k� 1 is continuous in T
3. Hence, in the expansion of (j � r), in a

linear combination of products (122) each term is either continuous, or a product of a

continuous function by a function from L2(T
3). Thus, (124) demonstrates that

,2W2kþ2
2 ðT

3
Þ. Similarly (89) yields j2W2kþ2

2 ðT
3
Þ, concluding the proof.

Thus mathematical analysis of the problem yields both good and bad news. The good

news is that the problem (33), (34) and (66) necessarily has at least one classical

solution, meaning in our case infinitely differentiable at each point. Nothing is known

about the number of solutions except that it is strictly positive, nor is the stability of any

of the MHD steady states guaranteed. The bad news is that the bounds for the solutions

and their derivatives rapidly degrade as "! 0. In particular, the inequalities that we

have derived are insufficient to claim that "r2j! 0: the relevant L2(T
3) bound we have

derived is (117).
It is interesting to compare this general result, that is for a general forcing, with our

numerical study of dissipative regions in the Archontis case. For example, in section 6.3

we find peak values j¼O("�1/2) on scales of order "1/2 indicating the scaling

"r2j¼O("�1/2). Note that these anomalously high values are concentrated only in

cylindrical cigars about the separatrices, of radius O("1/2) and so occupy an O(") volume

of space. This results in the estimate kjk2,2¼O("�1), which is a significantly milder

singularity than the one suggested by our bound (117). The high values have a negligible

impact on the energy spectrum, there being no peak visible at small scales. This can

probably explain the gap between the ‘‘worst case scenario’’ predicted by the rigorous

mathematical analysis of the problem and the numerical results: the Sobolev norms,

that we have used, prove inefficient in controlling formation of singularities in localised

regions, because they are of inherently integral nature. We should also note that our

simulations would not be able to resolve structure on scales much smaller than O("1/2).
The apparent deterioration of the derivatives of the solution with their order can be a

spurious artefact due to imperfection of the proof (which is especially possible in view of

22 A. D. Gilbert et al.
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the generality of our arguments – at no point in sections 7–9 we have made use of the
fact that the dynamo that we consider is powered by the Kolmogorov forcing (4)), or a
real attribute of the solutions. It is likely that for some forcing in (33) and (34), the
worst case scenario suggested by these bounds is indeed realised: they are based on the
norm bounds provided by the embedding theorem, which are sharp. In any case, this
indicates that any naive approach to the study of the limit "! 0 (for a general forcing)
whereby the diffusive term in (34) is just discarded, is likely to be erroneous; this can
only be done in the region outside dissipative structures. In the absence of the dominant
elliptic operator, the equations obtained in this way are not in general guaranteed to
have solutions. When they exist, the solutions are likely to develop singularities at some
points or on certain manifolds, or possibly on sets of a more complex structure. Note
that locally the existence of solutions is not a problem: the difficulty is in gluing together
patches of such solutions. The fast dynamo problem embodies a similar difficulty, with
small scales of magnetic field occurring in O(1) volumes of space, though with the fields
concentrating on multifractal sets (Childress and Gilbert 1995). Note, however, that the
L2(T

3)-norm of , is uniformly (over ") bounded, so the singularities are likely to be
more pronounced in the derivatives of the solution, rather than in the solution itself.

10. Discussion

We have presented investigations into the structure of the magnetic field and flow in the
equilibrated regime of the Archontis dynamo. Because of the highly three-dimensional
nature of the system, application of the available analytical tools yields only rough
results of limited value, and we lack any kind of complete solution. What we have done
is first to extend the range of diffusivities " over which the saturation mechanism
operates to give the steady state with nearly aligned fields. We have also classified the
symmetries of these flows and measured the field structure on the separatrices, home of
the cigar-like dissipative regions.

Then, using basic analytical tools, we have investigated the scaling of diffusive terms
near the separatrices. Here at leading order the field j¼ "�1,� that enters from the
body of the flow is transported along characteristics of ,¼,þ. Where these
characteristics come together at the stagnation points, where trajectories spiral in,
large gradients in j are generated, and diffusive terms enter the problem on scales of "1/2

as found by CG. In more general flows we may expect a similar behaviour, with regions
of heightened dissipation localised at points, where ,¼ 0 and along the unstable
manifolds of such points. Of course in the Archontis example the unstable manifolds
link the stagnation points, and so the topology here is very simple and the dissipative
regions very small, of order O(") in volume: in other cases they may wander through the
three-dimensional space, giving a picture of much greater complexity, as could be
occurring in examples in Cameron and Galloway (2006b). Again wider regions of
dissipation, perhaps dense in the space, could occur if examples exist where , has no
stagnation points; unfortunately, the form of , is not under our control except where
strongly constrained by symmetries. In order to cope with unknown levels of
geometrical complexity, an approach based on functional analysis is appropriate, and
this is the final part of this article, in which the existence and smoothness properties of
steady solutions are established.
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An analogy of the naively truncated equations (namely (33), (34) with "¼ 0) with the
Euler equation, which is the subject of intense research, is instructive. A method for the
investigation of the evolutionary Euler and Navier–Stokes equations consists of
introducing into the equations new regularising terms, such as "(�r2)�u or
"(�r2)�(@u/@t). It has been known for decades that for �4 5/4 solutions to the
regularised equations are infinitely differentiable at any t4 0; for �� 1/2 and �4 5/6
one can prove analyticity, at any t4 0, of solutions to the Navier–Stokes and Euler
equations, respectively (Zheligovsky 2010). For any � or � below the respective
thresholds, the problem is as difficult as the one for the original equation. When the
limit "! 0 is considered, the results so far are inconclusive. One can only show that
there exist sequences "k! 0 such that solutions for these "k converge to a weak solution
to the non-regularised equation, and either the limit weak solution is unique for all such
sequences, or there exists a continuum of weak solutions. Whether for "! 0
singularities develop in derivatives of the regularised solutions, and how strong they
are if they develop, remains unknown.

The difficulties arise in the general theory because the bounds for solutions are
singular in " as "! 0. Here the analogy with the Archontis dynamo problem
crystallises: in the Archontis problem, the diffusive terms can be regarded as a
regularisation of the naively truncated diffusionless problem, and we need to find out
what happens when the regularisation parameter " tends to zero. (In the diffusionless,
i.e. nonregularised, case it is unclear whether weak steady solutions exist.) We note that
the analogy may work both ways: the asymptotic analysis near the separatrix in the
Archontis dynamo (which we present in sections 5 and 6) may contain clues to what
happens in solutions to the regularised Euler (or even Navier–Stokes) equations in the
limit "! 0. Unfortunately, the clues are well-hidden, because the regularising term in
the Archontis problem is of a different structure, and a very specific symmetric steady
solution to the general system of MHD equations is considered.

Besides further attempts to carry out an asymptotic analysis of equations (33) and
(34) and their evolutionary versions, a number of other directions could be pursued in
the future, for example investigating time-dependent modifications to the steady
Kolmogorov forcing used here, or studying the evolution of superposed large-scale
fields and corresponding non-helical transport effects, as in the recent work of Sur and
Brandenburg (2009).
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45–78.
Mason, J., Cattaneo, F. and Boldyrev, S., Dynamic alignment in driven magnetohydrodynamic turbulence.

Phys. Rev. Lett. 2006, 97, 255002.
Pouquet, A., Meneguzzi, M. and Frisch, U., Growth of correlations in magnetohydrodynamic turbulence.

Phys. Rev. A 1986, 33, 4266–4276.
Sur, S. and Brandenburg, A., The role of the Yoshizawa effect in the Archontis dynamo.Mon. Not. R. Astron.

Soc. 2009, 399, 273–280.
Taylor, M., Pseudodifferential Operators, 1981. (Princeton, NJ: Princeton University Press).
Zheligovsky, V., Determination of a flow generating a neutral magnetic mode. Phys. Rev. E 2009, 80, 036310.
Zheligovsky, V., A priori bounds for Gevrey–Sobolev norms of space-periodic three-dimensional solutions to

equations of hydrodynamic type. Differ. Integral Equ. 2010. (submitted) (arXiv:1001.4237 [math.AP]).
Zienicke, E., Politano, H. and Pouquet, A., Variable intensity of Lagrangian chaos in the nonlinear dynamo

problem. Phys. Rev. Lett. 1998, 81, 4640–4643.

Dissipative structures in a nonlinear dynamo 25

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
i
l
b
e
r
t
,
 
A
n
d
r
e
w
]
 
A
t
:
 
1
4
:
1
4
 
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0


