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• plasma beta (βi , βe)
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Alfvénic Turbulence

☞ incompressible MHD in the Elsässer formulation (η = ν):

Alfvén waves  
traveling “up” or “down”  

the magnetic field Bnon-linear interaction only between 
counter-propagating Alfvén waves

Alfvénic turbulence ~ interaction of counter-propagating AWs



Alfvénic Turbulence

☞ split into “background + Alfvénic fluctuations”:



Alfvénic Turbulence

☞ split into “background + Alfvénic fluctuations”:

🛑 CAVEAT!  
purely transverse fluctuations 

(w.r.t. a mean field <B>)
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☞ split into “background + Alfvénic fluctuations”:

NON-LINEAR  
frequency 
(~ 1 / τNL )

LINEAR  
frequency 
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DISSIPATION  
frequency 

(~ 1 / τdiss )



Alfvénic Turbulence

NON-LINEAR  
frequency 
(~ 1 / τNL )

LINEAR  
frequency 
(~ 1 / τA )

NON-LINEAR  
PARAMETER

☞ in the following, I will consider balanced turbulence and forget about “±” for simplicity



Alfvénic Turbulence

NON-LINEAR  
frequency 
(~ 1 / τNL )

LINEAR  
frequency 
(~ 1 / τA )

non-linear parameter:

<< 1  (“WEAK”)

~ 1  (“STRONG”)

cascade time:
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“Classical” phenomenology of Alfvénic Turbulence
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weak 
Alfvénic cascade

Energy flux in k space

⚠  
An initially weak Alfvénic cascade  

will not remain weak!
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[Ng & Bhattacharjee, PoP 1996] 
[Galtier, Nazarenko, Newell, Pouquet, JPP 2000]



“Classical” phenomenology of Alfvénic Turbulence
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weak 
Alfvénic cascade

critic
ally balanced  

Alfvénic cascade (“à la Goldreich-Sridhar”)

[Goldreich & Sridhar, ApJ 1995]
[Ng & Bhattacharjee, PoP 1996] 
[Galtier, Nazarenko, Newell, Pouquet, JPP 2000]

Energy flux in k space



Further advances in phenomenology of strong Alfvénic Turbulence

critical balance + dynamic alignment 
 

 
1. weakening of nonlinearities  
2. induce anisotropy perpendicular to <B> (3D anisotropy)
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[Boldyrev, PRL 2006]

spectrum of  
dynamically aligned, strong Alfvénic turbulence

[Boldyrev, PRL 2006] 
[Chandran, Schekochihin, Mallet, ApJ 2015]



Further advances in phenomenology of strong Alfvénic Turbulence

…due to dynamic alignment the turbulent eddies look like  
a current sheet in the plane perpendicular to B! 
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☞ if the eddies at a scale live “long enough” for the 

tearing instability (i.e., reconnection) to grow, then 
we can imagine that this process will be responsible 
for the production of small-scale magnetic fluctations
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S0 = vA l0 / η   (Lunquist number)



Further advances in phenomenology of strong Alfvénic Turbulence
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spectrum of  
reconnection-mediated turbulence
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dynamic alignment  →  →  →  →  →  reconnection-mediated regime
[Boldyrev & Loureiro, ApJ 2017] 
[Mallet, Schekochihin, Chandran, MNRAS 2017]

[Boldyrev, PRL 2006] 
[Chandran, Schekochihin, Mallet, ApJ 2015]



Simulations of tearing-mediated turbulence (at MHD scales)
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•only in 2D geometry  

•requires extremely large numerical grids (640002 !!!)

☞ for some time, this was the only evidence for the realization of  

a reconnection-mediated regime at MHD scales (i.e., not at kinetic scales)



Simulations of tearing-mediated turbulence (at MHD scales)

☞ more recent 2D simulations (resistive vs collisionless):
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•gyrofluid model  

•include electron inertia (for collisionless rec.) 
☞  “kinetic regime” (will come back to this…) 

•reconnection <—> Kelvin-Helmholtz 
☞ see also Kowal et al., ApJ (2017, 2020)

resitive case collisionless case

(talk by Dario Borgogno)



Simulations of tearing-mediated turbulence (at MHD scales)

☞ latest news from 3D simulations:

-11/5
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10.000 x 10.000 x 5.000 (!!!)

⚠ However, despite its extremely high resolution,  

the simulation by Dong et al. still shows only a limited -11/5 range… 



Simulations of tearing-mediated turbulence (at MHD scales)

Simulatenously, we adopted a different approach, still in 3D:



Simulations of tearing-mediated turbulence (at MHD scales)

Usual approach:  
increase the separation between the transition scale λ ✽  and the actual dissipation scale λdiss 

ONLY by achieving very large S: requires extreme resolution!

Simulatenously, we adopted a different approach, still in 3D:



Simulations of tearing-mediated turbulence (at MHD scales)

Our approach:  
increase ALSO the lifetime of turbulent eddies, so that tearing becomes relevant at even larger scales!  

(and this is done by considering a smaller non-linear parameter, χ < 1)

Simulatenously, we adopted a different approach, still in 3D:



 Our Approach

• Look at the problem of tearing-mediated turbulence from a fundamental standpoint…  
 
☞ interaction of counter-propagating Alfvén-wave (AW) packets in 3D 

• Enable tearing to “easily” grow on top of (3D-anisotropic) turbulent eddies…  
 
☞ increase the eddy lifetime time by decreasing the strength of nonlinearities  

• Study a purely Alfvénic cascade, without interaction with other MHD modes…  
 
☞ 2-fields gyro-fluid model (~ Reduced-MHD) in order to keep only Alfvénic dynamics 



3D simulations of colliding AW packets

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

time-averaged properties 
(unless specified…)

turbulence peak activity
[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

δb⊥ / B0  (χ0 ~ 1)B0

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

δb⊥ / B0  (χ0 ~ 1)B0

⦿ B0

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

δb⊥ / B0  (χ0 ~ 1)B0

⦿ B0

inset: average along z

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

δb⊥ / B0  (χ0 ~ 1)B0

⦿ B0

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

δb⊥ / B0  (χ0 ~ 0.5)B0

⦿ B0

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

δb⊥ / B0  (χ0 ~ 0.1)B0

⦿ B0

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

-11/5

-3/2

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

-11/5

-3/2

☞ A tearing-mediated regime can be achieved at weak nonlinearities 
☞ Easier to achieve at χ0 < 1 than at χ0 ~ 1

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

• Is this tearing-mediated turbulence? if yes, it requires dynamic alignment!

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets
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☞ Dynamic alignment does occur at weak nonlinearities 
☞ Scale-dependent alignment is stronger at χ0 < 1 than at χ0 ~ 1

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets
du

rin
g A

W
 co

llis
ion

s 
(s

ca
le

-d
ep

en
de

nt
 a

lig
nm

en
t 

in
du

ce
d 

by
 A

W
 s

he
ar

in
g)

wh
ile

 A
W

 ar
e f

ar
 ap

ar
t 

(s
ca

le
-d

ep
en

de
nt

 m
is

-a
lig

nm
en

t 
in

du
ce

d 
by

 r
ec

on
ne

ct
io

n)
[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets
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☞ The scale-dependent alignment angle exhitbis a “patchy” behaviour  
(in both space and time!) 

 
☞ Should be taken into account when performing an ensemble average 

(in both simulations and spacecraft data!)

[Cerri et al. ApJ 2022]



Weak Alfvénic turbulence with dynamic alignment

☞ Moderately weak regime ( χ < 1 )

New phenomenological scalings

● k|| = const.           ● sin(θk) ∝ k⊥-1/2           ●  EB(k⊥) ∝ k⊥-3/2

● transition to tearing-mediated turbulence competes with the usual transition to critical balance

☞ Asymptotically weak regime ( χ << 1 )

● k|| = const.           ● sin(θk) ∝ k⊥-1           ●  EB(k⊥) ∝ k⊥-1

● no usual transition to critical balance possible, only transition to tearing-mediated turbulence

[Cerri et al. ApJ 2022]



The many faces of the Alfvénic cascade
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actual dissipation rangeCB cascade without dynamic alignment

[Goldreich & Sridhar, ApJ (1995)]
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The many faces of the Alfvénic cascade
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(weak cascade)
actual dissipation range

CB cascade with dynamic alignment

CB cascade without dynamic alignment

[Boldyrev, PRL (2006)]

[Goldreich & Sridhar, ApJ (1995)]

reconnection-mediated regime
[Boldyrev & Loureiro, ApJ (2017)]

dissipation  
scales

-11/5



The many faces of the Alfvénic cascade

(weak cascade)
actual dissipation range

CB cascade with dynamic alignment

CB cascade without dynamic alignment

[Boldyrev, PRL (2006)]

[Goldreich & Sridhar, ApJ (1995)]

reconnection-mediated regime
[Boldyrev & Loureiro, ApJ (2017)]

(weak cascade with alignment)
[Cerri et al., ApJ (2022)]
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The many faces of the Alfvénic cascade

-3/2

(weak cascade)
actual dissipation range

CB cascade with dynamic alignment

CB cascade without dynamic alignment

[Boldyrev, PRL (2006)]

[Goldreich & Sridhar, ApJ (1995)]

reconnection-mediated regime
[Boldyrev & Loureiro, ApJ (2017)]

-3/2
(weak cascade with alignment)

[Cerri et al., ApJ (2022)]
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The many faces of the Alfvénic cascade

-1

(weak cascade)
actual dissipation range

CB cascade with dynamic alignment

CB cascade without dynamic alignment

[Boldyrev, PRL (2006)]

[Goldreich & Sridhar, ApJ (1995)]

reconnection-mediated regime
[Boldyrev & Loureiro, ApJ (2017)]

(weak cascade with alignment)
[Cerri et al., ApJ (2022)]
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The many faces of the Alfvénic cascade

(weak cascade)
actual dissipation range

CB cascade with dynamic alignment

CB cascade without dynamic alignment

[Boldyrev, PRL (2006)]

[Goldreich & Sridhar, ApJ (1995)]

reconnection-mediated regime
[Boldyrev & Loureiro, ApJ (2017)]

dissipation  
scales

(weak cascade with alignment)
[Cerri et al., ApJ (2022)]

⚠  
in “COLLISIONLESS” plasmas: 

transition to 
KINETIC-RANGE TURBULENCE 

 
see Cerri, Groselj & Franci, FrASpS (2019)

+ 
2D simulations of  

reconnection-mediated kinetic range: 

☞ Cerri & Califano, NJP (2017) 

☞ Franci et al., ApJL (2017)



Take-home message(s)

➥ FOR MORE DETAILS: Cerri et al. ApJ 2022

☞ New phenomenological scalings of weak turbulence with dynamic alignment 

    ➢ new transition scales depend on ( χ , MA , S ) at injection scales 
     ➢ at χ < 1 the transition to tearing-mediated regime occurs a scales that can be larger than 
         those predicted for a critically balanced cascade by several orders of magnitude 
     ➢ transition to tearing-mediated regime may even supplant the usual weak-to-strong transition 

☞ Dynamic alignment or mis-alignment states as “patchy” features in space and time 

      ➢ AW shear-induced dynamic alignment + tearing-induced dynamic mis-alignment 
 
 

☞ A decade-long range of tearing-mediated regime in 3D Alfvénic turbulence 

      ➢ from RMHD simulations wtih a “first-principle” setup (AW-packets collisions)



Open issues that we could collaborate on

☞ Tearing-mediated vs Kelvin-Helmholtz-mediated turbulence (“fluid” approach possible) 

    ➢ parameter dependence (scale separation, species’ beta, resistive vs collisionless, …) 
    ➢ role of ion/electron finite-Larmor-radius (FLR) effects 
    ➢ role of species’ temperature anisotropy 
     ➢ see Passot et al., arXiv:2401.03863 
 
 

☞ Reconnection & heating in sub-ion-scale turbulence (“kinetic” treatment necessary!) 

    ➢ role of ion-coupled vs electron-only reconnection  
    ➢ role of different heating mechanisms (Landau damping, stochastic heating, ion-cyclotron, …) 
     ➢ see talk by Camille! (tomorrow) 
 
 

☞ The elephant in the room: balanced vs imbalanced turbulence… 

Thank you for your attention!



Backup Slides



Could solar-wind observations support these ideas?

-2.2 (?!)
-1.5

-1 (?)

[Kasper et al., PRL (2021)]1/f range

strong alignment!

[Wicks et al., PRL (2013)]



Could solar-wind observations support these ideas?

[Sioulas et al., arXiv:2404.04055]

alignment at 
large scales

mis-alignment at 
intermediate and small scales

weak nonlinearities 
at large scales

⚠ WARNING: 
this is imbalanced turbulence!

☞ more recent analysis on PSP data (5-pts structure functions):

z+/z- keep aligning?

mixed weak/strong 
cascade for z+/z-



Could solar-wind observations support these ideas?

[Sioulas et al., arXiv:2404.04055]☞ more recent analysis on PSP data (5-pts structure functions):

largest scales: isotropy
towards smaller scales

intermediate scales: 3D anisotropy developed  
due to scale-dependent alignment

intermediate/transition scales:  
decreasing anisotropy! (due to reconnection?)

towards smaller scales

smallest scales: some 3D anisotropy develops again!



Simulations setup

basic 3D setup: start from the building blocks of the Alfvénic cascade!

Simulations performed with the Hamiltonian 2-field gyro-fluid model/code described in [Passot, Sulem & Tassi, PoP (2018)] 

☞ model retains only Alfvén & kinetic-Alfvén modes (assumes low frequency ω << Ωc,i , strong anisotropy k|| << k⊥ ) 

☞ dissipation through a combination of 2nd-order Laplacian operator (with resistivity η) and 8th-order hyper-dissipation operator 

☞ employed at MHD scales (0.004 ≲ k⊥ ρi ≲ 1), i.e., equivalent to reduced MHD (RMHD) 

☞ exploit lower nonlinearities (χ < 1) in order to increase the turbulent-eddy lifetime at scale λ and “facilitate” the onset tearing instability

B0

6723 grid

z - z +

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

[Cho & Lazarian, ApJ (2004)]

[Cerri et al. ApJ 2022]



3D simulations of colliding AW packets

[Cerri et al. ApJ 2022]



Two-field gyro-fluid (2fGF) Hamiltonian model

☞ At scales k⊥ de << 1, the original 2fGF equations from [Passot, Sulem & Tassi, PoP 2018] reduce to (B0 along z):

● Ne = number density of electron gyro-centers

● A|| = field-parallel component of magnetic potential

● [ F , G ] = (∂x F) (∂y F) - (∂y F) (∂x G)  =  Poisson brackets of two fields F and G

● electrostatic potential 𝜑 and parallel magnetic-field fluctuations Bz are given by:

   M are operators; in Fourier space they read:



Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum 

 

☞ for a formal derivation, see, e.g.,  

[Ng & Bhattacharjee, PoP 1996] 
[Galtier, Nazarenko, Newell, Pouquet, JPP 2000] 

[Schekochihin, JPP 2022] 
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(i.e., Δ(δz)/δz ~ 1)

crossing time ~ linear propagation time:

distortion time ~ non-linear time:
⇒ (change during 

one collision)

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum



Phenomenology of Alfvénic Turbulence

⇒   no parallel cascade (k// = cst.), only a cascade in k⟘ !

How many interactions are needed to produce a significant change in counter-propagating Alfvén-wave packets? 
(i.e., Δ(δz)/δz ~ 1)

crossing time ~ linear propagation time:

distortion time ~ non-linear time:
⇒ (change during 

one collision)

⇒ assume changes accumulates 

as a random walk:
⇒ CASCADE  

TIME

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum
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☞ fluctuations’ scaling and energy spectum 

from constant energy flux through scales:
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while linear frequency is constant because there is no parallel cascade:
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Phenomenology of Alfvénic Turbulence

☞ fluctuations’ scaling and energy spectum 

from constant energy flux through scales:

⚠  A very important consequece of these scalings is that an initially weak Alfvénic cascade will not remain weak!

non-linear frequency increases with decreasing scales,  
while linear frequency is constant because there is no parallel cascade:

⇒

transition to critical balance (χ ~ 1)

⇒

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation 

 

☞ for furhter details, see, e.g.,  

[Goldreich & Sridhar, ApJ 1995] 
[Oughton & Matthaeus, ApJ 2020] 

[Schekochihin, JPP 2022] 
 
 



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

B

☞ At this point, linear, non-linear, and cascade timescales match each other:
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you can see the ``critical-balance condition’’ as the result of causality:



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

B

☞ At this point, linear, non-linear, and cascade timescales match each other:

the information about Alfvénic fluctuations decorrelating in the perpendicular 

plane over an eddy turn-over time τnl can only propagate along the field for a 
length l|| at maximum speed vA.  

 
“So… CB is essentially AWs trying to keep up with the turbulent eddies…”

you can see the ``critical-balance condition’’ as the result of causality:



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

B

the information about Alfvénic fluctuations decorrelating in the perpendicular 

plane over an eddy turn-over time τnl can only propagate along the field for a 
length l|| at maximum speed vA.  

 
“So… CB is essentially AWs trying to keep up with the turbulent eddies…”

Therefore, once τnl ~ τA is reached, the balance is mantained.  

(In principle, this could be done by continuing the cascade with τnl = const., or 

by generating smaller l|| such that τA ~ l||/vA ~ τnl keeps holding… it is the latter)

you can see the ``critical-balance condition’’ as the result of causality:

☞ At this point, linear, non-linear, and cascade timescales match each other:
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☞ At this point, linear, non-linear, and cascade timescales match each other:

☞ fluctuations’ scaling + spectum from ε = const. (you know the drill):
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☞ now, you can also compute the fluctuations’ wavenumber anisotropy:

☞ At this point, linear, non-linear, and cascade timescales match each other:

☞ fluctuations’ scaling + spectum from ε = const. (you know the drill):
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dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy 

 

☞ for furhter details, see, e.g.,  

[Boldyrev, PRL 2006] 
[Schekochihin, JPP 2022] 
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dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

☞ Observations and simulations show that δvλ and δbλ have a spontaneous tendency to 

align in the plane perpendicular to the local mean field <B>λ, within an angle θλ  
 

(e.g., Podesta et al., JGR 2009; Hnat et al., PRE 2011; Mason et al., ApJ 2011;  

Wicks et al., PRL 2013; Mallet et al., MNRAS 2016; …)

[Boldyrev, PRL 2006]
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⚠ the alignment between δvλ and δbλ 
is not the same as the alignment 

between δz+λ and δz-λ!
(but they are related: see Schekochihin arXiv:2010.00699) [Wicks et al., PRL 2013]
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☞ Observations and simulations show that δvλ and δbλ have a spontaneous tendency to 

align in the plane perpendicular to the local mean field <B>λ, within an angle θλ  
 

(e.g., Podesta et al., JGR 2009; Hnat et al., PRE 2011; Mason et al., ApJ 2011;  

Wicks et al., PRL 2013; Mallet et al., MNRAS 2016; …)

[Boldyrev, PRL 2006]

⚠ the alignment between δvλ and δbλ 
is not the same as the alignment 

between δz+λ and δz-λ!
(but they are related: see Schekochihin arXiv:2010.00699) [Wicks et al., PRL 2013]

alignment  ⇒  depletion of non-linearities:

⚠ but remember that fluctuations cannot be perfectly aligned (θλ = 0) in order to have a non-linear cascade


