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The main topics of this talk

Rings are now seen around at least 3 small bodies of the solar system

Why are they confined at second-order resonances, where they are not 
supposed to be confined?

Why is one of  the ring systems (Quaoar’s) well beyond the Roche limit, 
where they it is not supposed to survive?
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… making a ring on a desk …
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Spin-Orbit Resonances between the 
spin rate of irregular bodies and 
orbital mean motion of ring particles
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n/Ω= 5/6
1st order (Lindblad)
resonance 

n/Ω= 1/3
2nd order
resonance 

here we get a problem:

à this cannot be supported 
by a collisional disk

Murray & Dermott 2000

n/Ω= 7/8

here wave pattern speed
= spin rate of body
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radius 25 m
complete (3D, 2π) N-body
collisional simulation
no self-gravity

Chariklo’s ring simulation
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1/3 resonance

The ring evolution proceeds in three phases

Chariklo’s ring simulation
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phase I: circularization of orbits  & radial viscous spreading

Chariklo’s ring simulation
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phase II: excitation by the 1/3 resonance

Chariklo’s ring simulation



The 1/3 resonance tries
to force a periodic streamline,
but results in crossing problem

The streamline becomes 
coherent (no Xing) and its
“sweeps” the surrounding
material through the inversion
of the velocity field

The surrounding material
goes faster than the local ring material à
it loses energy during collisions and 
moves down into the ringlet

The surrounding material
goes slower than the local ring material à
it gains energy during collisions and 
goes up into the ringlet
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Phase III: radial confinement and development of free modes

Chariklo’s ring simulation
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Chariklo’s ring simulation



Ec
ce

nt
ric

ity
e

Jacobi constant a + a0(m-2)e2/2 (km)
410405

phase II: excitation by the 1/3 resonance
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(1) confinement (1) confinement

(2) resonance
excitation

(2) resonance
excitation

(3) collisional damping
à steady stateresonance

response
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Phase III: radial confinement and development of free modes

Chariklo’s ring simulation
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Chariklo’s ring simulation
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Chariklo’s ring simulation

407 408

note the *single-sided* 
confinement

à slow outwards drift



m=1 mode *fixed* 
in inertial frame

Various proper modes (m =1, 2, 3,…)
with pattern speed *different* from 
angular velocity of mass anomaly



405

410

415

400

Ra
di

us
 (k

m
)

Longitude

m=1 (fixed in inertial frame)

m=1 + free mode m=2

m=1 + free modes
m=2 and m=3

Free modes:
Lindblad-type
m-lobed oscillations



After subtracting the 
m= 1, 2 , 3 modes 

1 km

© Heikki Salo



Conclusions

Our simulations show that the 1/3 resonance can confine a ring (self-
organization is possible in spite of initial streamline-crossing problem)

The 1/3 resonance excites the eccentricity but fails to lock the ring into a 
forced resonant motion (due to streamline crossings)

Instead, free modes are excited (m=1, 2, 3…). They create angular momentum 
flux reversal and lead to single-sided ring confinement



A problem remains 

Quaoar’s rings are well beyond the Roche limit of the
body : they should disappear within a few weeks!
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Quaoar
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Roche limit

1/3
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Resonances between the spin rate 
of irregular bodies and orbital 
mean motion of ring particles



- Q1R’s orbit coplanar with Weywot’s orbit to within uncertainties
- Q2R’s detections consistent with circular ring coplanar w/ Q1R
- Quaoar’s limb (almost) consistent with the two rings equatorial

Roche limit

Q1R

Q2R



Matthew Hedman
‘News and Views’, Nature
9 Feb. 2023
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was Edouard 
Roche wrong?



Roche limit



Quaoar

a ring respecting 
the Roche limit Roche limit

?

a (dense) ring 
should not
exist here!



Quaoar

Roche limit

a Roche critical density: 𝝆𝑹 =
𝟑𝑴
𝜸𝒂𝟑

M

?



𝝆𝑹 =
𝟑𝑴
𝜸𝒂𝟑

𝑴 = 𝟏. 𝟐 × 𝟏𝟎𝟐𝟏 kg
𝜸 = 𝟏. 𝟔 ⟹ 𝝆𝑹=	30	kg m%𝟑

𝒂 = 𝟒𝟏𝟓𝟎 km

àThe classical Roche criterium requires extremely low bulk 
density of the particles for Quaoar’s ring to survive (i.e. avoid
accretion)



Bridges, Hatzes & Lin
Nature 1984, T = 210 K

Hatzes, Bridges & Lin
MNRAS 1988, T = 123 K

Model 4

Model 1



160 m

Model 1  does not support a plausible 
Quaoar’s ring with τ = 0.25 and R = 1 m

ρ = 60 kg m-3 ρ = 90 kg m-3

‘gas’ phase ‘solid’ phase



160 m

ρ = 5000 kg m-3 ρ = 6000 kg m-3

Model 4  does support a plausible 
Quaoar’s ring with τ = 0.25 and R = 1 m
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A problem remains 

A high velocity dispersion prevents accretion but means 
a rapid radial dispersion of the ring

Thus the ring needs a confinement mechanism, which 
may be insured by the 1/3 resonance



Conclusions

QR1 is well beyond the Roche limit (7.4 Quaoar’s radii), the first of its kind!
(same problem with Q2R)

Simulations show that Hatzes+ (1988) rebound coefficient law can inhibit accretion
if collisions are sufficiently elastic (at low temperature)

Like Chariklo’s and Haumea’s rings, Q1R is close to the 1/3 resonance with the body, 
(and Q2R is close to the 5/7 resonance). This resonance may be may the cause 
of their confinements (supported by the simulations shown in the 1st part of this talk)


