GAIA binaries with CHARA & VLTI

Stefan Kraus, Tyler Gardner, Yi Lu

Sorabh Chhabra, Dan Mortimer, Isabelle Codron, Owain Snaith (Exeter), Narsi Anugu (CHARA), John Monnier (Michigan), Michael Ireland, Luca Casagrande (ANU), MIRCX/MYSTIC team, CHARA team

2023 May 31 SPICA workshop

The GAIA opportunity: Astrometric binaries/planets

GAIA DR3 provides census of stellar multiplicity in solar neighborhood (Robin+ 2012, Eyer+ 2013):

- >0.1": resolved, only 157 binaries w/direct meas. M₁ and M₂
- <0.1": photocenter (~10 µas accuracy)

Unresolved binaries:

~28,000,000 non-single stars, RVs + photocenter orbits

Giant planets:

~100,000 astrometric orbits

GAIA binaries: Flux-ratio/separation degeneracy

GAIA's photocenter `orbits' face stellar flux ratio / separation degeneracy → No dynamical masses for non-eclipsing systems

Photocenter motion measured with GAIA

GAIA-BIFROST survey @ CHARA+VLTI

Flux-ratio measurement at **single epoch** yields:

- Fully characterized 3-D orbits
- Dynamical masses
- Precision ages (for evolved objects)

GAIA-BIFROST survey ("GAIA-BInaries: Formation & fund. paRameters of Stars + planeTs"), funded by ERC Consolidator grant

Accessible with MIRCX + BIFROST: **~6000 binaries** (d<1 kpc)

Analysis of DR3 sample

Yi Lu+ in prep

Target selection

Select **rare stellar populations** most valuable for improving evolutionary models, e.g.:

- Massive stars: overshooting, mass loss
- Low-mass stars
- Pre-main-sequence stars
- Very-low metallicity stars
- Cepheids
- Evolved stars
- ...

Dedicated lunch session at EAS 2023, Krakow, Poland to discuss target selection/prioritization & synergies:

LS8, Monday July 10, 12:30-14:15

Galactic Archaeology

ž Δ

6

Red Giant Branch stars good age indicator (especially for [M/H]<-0.5, where ages largely metallicity insensitive).

Problem: strong age/mass degeneracy

Interferometry dynamical mass + isochrones: mass uncertainty 3% \rightarrow age uncertainty 10%

Astroseismology (best competing method): mass/radius uncertainty 9% → age uncertainty 45%

Use dynamical masses to calibrate asteroseismology scaling relation (essential for TESS & PLATO!)

Ages crucial to **uncover the history of Milky Way**, e.g.:

- Separate diff. age populations \rightarrow MW substructures, minor mergers
- Episodic star formation \rightarrow quick change in abundance, followed by plateau ٠

Star Formation through the Cosmic Ages

Star Formation at low metallicity might proceed differently:

- → Lower dust opacities
- → Greater cooling rates at high gas densities
- → Increased fragmentation in disks/cores

Prediction for binary properties: Metal-poor binaries preferentially tighter & with more unequal mass ratio (Machida+ 2009, Bate 2019)

GAIA-BIFROST:

- compare separation & mass ratio distribution for metal-poor and metal-rich subsample
- use dynamical masses to improve evolutionary models for metal-poor stars

Bate 2019

Preliminary results

- Orbital elements from Gaia
- Scale between Gaia orbit and our data point gives semi major axis \rightarrow **dynamical mass** of system
- Flux ratio and photocenter orbit
 - \rightarrow individual masses

$$(M_1+M_2)^{1/3} P^{2/3} [M_2 / (M_1+M_2) - f/(1+f)] = a_{photo} / plx$$

For all binaries: $M_1 + M_2 = a_{semi}^3 / P^2$ With SB1: $K_1 = 2pi a_1 sin(i) / [P (1-e^2)^{1/2}]$ $a_{semi} = a_1 + a_2$ $a_1 / a_2 = M_2 / M_1$ With SB2: $K_1 / K_2 = M_2 / M_1$

Gardner+ in prep

Preliminary results

Sample observed in CHARA pilot study so far

Yi Lu+ in prep

Measuring flux ratio close to GAIA bands

2µm 0.50 -0.45 0.40 ¹_5/€ 0.35 0.30 0.25 ~15% uncertainty in GAIA bands 0.20 0.15 + 0.75 2.00 0.50 1.00 1.25 1.50 1.75 2.25 2.50 λ [μ m]

With DR3: achievable dynamical mass precision limited by GAIA orbital elements

Future: Wavelength-dependence of flux ratio could become a limiting factor

Measuring flux ratio close to GAIA bands

With DR3: achievable dynamical mass precision limited by GAIA orbital elements

Future: Wavelength-dependence of flux ratio could become a limiting factor

→ measure in multiple bands & close to GAIA bands

BINARY FORMATION

Raghavan+ 2010

5

WDS

9

BINARY FORMATION

Spin-orbit alignment: Rossiter-McLaughlin effect

Rossiter-McLaughlin effect allows measuring spin-orbit alignment ("obliquity") for **transiting systems**

Albrecht+ 2012; Romanova+ 2013

Planet Formation

Measuring spin-orbit alignment for wide-separation systems decisive test on formation + dynamical evolution Liska+ 2019; Livingston

Binary Formation

DISK fragmentation

Companions form in coplanar circumstellar disk through fragmentation

CLOUD fragmentation

Protostars form separately and undergo star-disk encounter to form tight binary

Bate 2018

Binary Formation

Spin-spin alignment from Bate 2018 cloud-collapse SPH simulation

Measuring spin-orbit alignments with interferometry

Photocenter displacement in photospheric absorption line constrains sky-projected orientation of stellar spin-axis

- + Inclination from v sin(i) + astroseismology
- → 3D orientation of stellar spin axis

High spectral interferometry with SPICA or BIFROST needed to measure spin-orbit alignment for smaller stars & slow rotators

<u>β Pic:</u> 3-D obliquity angle 3±5° → Spin / planet orbit / debris disk well aligned

Kraus+ 2012, 2020b

Southern Hemisphere Survey with Asgard/BIFROST

VLTI visitor instrument optimised for:

- short wavelengths (1-1.8 µm)
- high spectral resolution

BIFROST: VLTI visitor instrument

- Part of 'Asgard Suite': NOTT L-band nuller + Heimdallr fringe tracker
- formal ESO approval process started in March 2022

Summary & Synergies with SPICA

GAIA-BIFROST survey @ CHARA+VLTI to provide...

- Dynamical masses
 - Survey started with MIRC-X (H) + MYSTIC (K)
 - Adding shorter wavelengths will increase precision: MIRC-X (J) + SPICA (R)
- Spin-orbit alignment
 - R=6000 VPHG to be manufactured for MIRC-X (J band)
 - R=10,000 with SPICA (R band) could add slower rotators
- We should coordinate SPICA and GAIA-BIFROST efforts!
- Asgard/BIFROST instrument proposed to ESO (survey could start 2026)

 Join us for lunch session at EAS meeting in Krakow to discuss target selection & synergies: LS8: Monday, July 10th, 12:30 ... 14:15

