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Space plasmas are magnetized and turbulent 

with essentially no collision. 

 

β (ratio of thermal to magnetic pressures) ≈ .1-10  

Ms (ratio of typical velocity fluctuations 

       to sonic velocity) ≈ 0.05 – 0.2 

 

Fluctuations: power-law spectra   

                     extend to ion gyroscale and below 

 

Dispersive and kinetic effects cannot be ignored. 

 

Presence of coherent structures (filaments, shocklets, magnetosonic solitons, 

magnetic holes) with typical scales of  a few ion Larmor radii. 

 

The concepts  of waves make sense even in the strong turbulence regime 

. 

Main features of 1 AU solar wind plasmas 

solar 

 wind 

For reviews see e.g. :  

Alexandrova et al. SSR, 178, 101 (2013);  

Bruno & Carbone, Liv. Rev. Solar Phys. 10,2 (2013). 



 

1. Spectral energy distribution and its anisotropy in the solar wind  

Debated questions 

Sahraoui et al. PRL 102, 231102 (2009) 

k-filtering -> θ=86° 

proton 

gyrofrequency 

perpendicular  

magnetic 

 spectrum 

parallel 

magnetic 

 spectrum  

~K41 

electron 

gyrofrequency 

Alexandrova et al. Planet. Space Sci. 55, 2224 (2007) 

Several power-law ranges: Are they cascades? strong or wave turbulence? which waves? which 

slopes? Important to estimate the heating rates.  



 

 

 

Heating of protons via 

Landau damping ? 

From Sahraoui et al. PRL (2010). 

Does the anisotropy persist  

at small scales? 

 

At what scale(s) does dissipation take 

place? By which mechanism?  

Role of ion and electron Landau damping ? 



Alexandrova et al. JGR 111, A12208 (2006). 

- slow waves 

 

- coherent structures: 

 
       - Current filaments  

       - Mirror structures (magnetic holes and humps) 

2. Main features of magnetosheaths plasma 

Important role of the temperature anisotropy:  
AIC (near quasi-perpendicular shock) and mirror instabilities (further inside magnetosheath) 

 

Very strong compressibility. 

Many cases with k-1 spectrum at large scales (or even shallower, see e.g. Hadid et al. ApJL 813, L29, 2015 

for the Kronian case) 

Presence of : 

- mirror modes 

Alfvén vortices 

Here identified as mirror modes using k-filtering technique, 

(Pinçon & Lefeuvre,  JGR 96, 1789; 1991): 

these modes have essentially zero frequency in the plasma frame 

Sahraoui et al. PRL 2006 
spatial spectrum steeper 

than temporal one 



Fast magnetosonic shocklets 

  (Stasiewicz et al. GRL 2003)  

Slow magnetosonic solitons 

  (Stasiewicz et al. PRL 2003) 

Mirror structures in the terrestrial 

magnetosheath  

       (Soucek et al.JGR 2008) 

Signature of magnetic filaments 

  (Alexandrova et al. JGR 2004) 

Also « compressible vortices » 

(Perrone et al. ApJ 2016, in press) 



Turbulence (and/or solar wind expansion) generate  temparature anisotropy 

This anisotropy is limited mostly by mirror and oblique firehose instabilities. 

Role of anisotropy on the turbulence « dissipative range»? 

Bale et al. PRL 103, 21101 (2009); 

see also Hellinger et al. GRL 33, L09101 (2006). 

color: magnitude of δB; enhanced δB also corresponds 

to enhanced proton heating. 

2. Heating of the plasma: temperature anisotropy and resulting micro-instabilities 



As a summary, the solar wind at meso-scales1 has the following main characteristics: 

 

 - very few collisions 

 

 - moderately strong guide field 

 

 - non-negligible compressibility 

 

 - decoupling between ion and electron velocities 

 

 - anisotropic pressures 

 

 - dissipative effects such as Landau damping at several scales 

 

 - co-existence of strong turbulent structures and waves 

1: i.e. at scales close to the ion gyroradius. 

In view of the difficulty in performing numerical simulations of  the full Vlasov equation 

(or even its hybrid and/or gyrokinetic2 reductions), it is desirable to look for appropriate 

fluid models. 

2 kinetic equation with averaging over particles Larmor radius: 5D and longer time scales  



How to construct a fluid model for the meso-scale solar wind? 

One needs a fluid model that 

 

• retains low-frequency kinetic effects: Landau damping and FLR corrections 

  (high frequency effects such as cyclotron resonance will be neglected) 

 

• allows for background temperature anisotropies 
 

• does not a priori order out the fast magnetosonic waves. 

  -> limits to standard (anisotropic) MHD at large scales. 

Requirements: The model should 
 

• reproduce the linear properties of low-frequency waves. 

• ensure that the system does not develop spurious instabilities at scales smaller 

than its range of validity, and thus remains well-posed in the nonlinear regime. 

Such a fluid model could also prove useful to provide initial and/or boundary 

conditions for Vlasov simulations. 



The various fluid approaches 



The main issues when writing a fluid model concerns the determination 

of the pressure tensor, and thus the order at which the fluid hierarchy is closed, 

and of the Ohm’s law. 

 

Pressure can be taken: 

 

-   such that the plasma is cold 

- such that the flow remains incompressible 

- scalar and polytropic (isothermality is a special case) 

- scalar with an energy equation 

- anisotropic but bi-adiabatic 

- anisotropic but taking into account heat fluxes (with appropriate closure) 

- anisotropic with coupling to heat flux equations (with appropriate closure 

     on the 4th rank fluid moment) 

- like above with the addition of non-gyrotropic components (FLR corrections) 

 

 

Ohm’s law can include: 

- UxB term only: valid at MHD scales 

- ion/electron decoupling at ion inertial scales :  Hall term (monofluid) 

- electron pressure contributions (important when kρe≈(me/mi)
1/2) 

- electron inertia, important close to electron inertial scales 

- diffusive term, in the presence of collisions. 

- or be replaced by a bi-fluid system for ions and electrons 



Still many open problems: 

 

The turbulent regime is not totally understood  

(various theories : Iroshnikov-Kraichnan 1965, Goldreich-Sridhar 1995, Perez & Boldyrev 2009). 

 

This model has many advantages: 

 

 Possibility to identify two conserved quantities ( ∫(z± )2   where z± =u±b) 

 which separately cascade towards small scales. 

 

 Existence of an exact law, analogous to the 4/5 law of Karman-Howarth  

 for homogeneous isotropic turbulence, giving statistics of 3rd  order moments for      

velocity increments (Politano & Pouquet, GRL 25, 273; 1998) and allowing 

 for the estimation of turbulent heating (Sorriso-Valvo et al. PRL 99, 115001 (2007)) 

 

Incompressible MHD 

Drastic approximation, that assumes the presence of collisions;  valid at very large scales. 

Allows one to focus mainly on nonlinear phenomena. 



Reduced MHD 

In the presence of a strong ambient field, the dynamics is essentially decoupled, 

even for finite beta, between: 

 

- Incompressible MHD in the planes transverse to B0   

- Alfvén waves parallel to B0 

 

Derived originally for small β (Rosenbluth et al. and Strauss PoF 1976),  

it was later extended to more general cases. 

 

Reduced MHD can be derived from gyrokinetic theory (Schekochihin, ApJ. sup. 2009). 



To account for « temporal » dispersive effects at scales of the order or smaller than di: 

If diffusive term and electron pressure are neglected: 

                                                   

    E=-Ue x B 

Decoupling of electron and ion velocities. 

The magnetic field however remains frozen in the electron flow. 

 
With an ambient field and in the linear approximation: dispersive effects lead to separation  

of AWs into whistlers and ion cyclotron modes.  

 

Replace Ohm’s law E=-U x B by a more general expression. 

After taking electron velocity equation, neglecting electron inertia, write: 

Hall MHD 



Both in the weak turbulence regime and in a shell model (Galtier and Buchlin ApJ 2007),  

incompressible Hall-MHD is able to capture a transition from an AW cascade at large  

scale, towards another type of cascade dominated by the Hall nonlinearity. 

 

Transition at the ion inertial length: di=vA/Ω 

Incompressible limit only valid only in the limit β-> ∞ (Sahraoui et al. JPP ‘07) 

 

In the dispersive case, it is possible to derive a 4/5 law (Galtier, PRE 77, 015302 (R); 2008) 

and to develop a theory of weak turbulence (Galtier, JPP 2006). 

 



In the presence of an ambient field, the Hall term 

induces dispersive effects. 

Hall term 

Ti << Te   

ω<<Ωi 

k|| vthi<<ω<<k|| vthe 

It correctly reproduces whistlers and KAW’s for small to moderate β. 

 

It contains waves that are usually damped in a collisionless plasma 

and whose influence in the turbulent dynamics has to be evaluated.  

Hall-MHD is a rigorous limit of collisionless kinetic theory for: 

Irose et al. , Phys. Lett. A 330, 474 (2004) 

Ito et al., PoP 11, 5643 (2004) 

Howes, NPG 16, 219 (2009) 

In order to capture finite beta effects: 

cold ions: 

 

The compressible Hall-MHD model 

Equation of state:  

Isothermal (γ=1) when Vph<<Vth 

Adiabatic when Vph>>Vth 



Compressibility introduces coupling to magnetosonic modes and allows for 

the presence of the decay instability for β<1: important for the generation of 

contra-propagating Alfvén waves and thus the development of a cascade. 

 

Dispersion can lead to solitonic structures: 


B

Laveder et al. PoP 9, 293; 2002 Example: Alfvén wave filamentation in 3D Hall-MHD:  

but can also be the source of modulational instabilities  

and the formation of small scales: wave collapse: 

Oblique soliton in Hall-MHD 

(from Stasiewicz et al. PRL 2003) 

But compressible Hall-MHD lacks finite Larmor radius corrections, important for β~1, 

and the correct dissipation of slow modes. 



In order to capture high frequency phenomena and to break the magnetic field  

frozen-in condition: Introduce electron inertia. 

The bifluid model 

Allows one to study:  

 

- whistler turbulence  

(neglecting ion inertia the model can be simplified to so-called electron MHD; 

at small scales: ions are essentially immobile; currents are due to electrons)  

From Rax, Physique des Plasmas 

Dynamical equations for the electron (and ion) velocity. 

- reconnection 

no need to introduce dissipative mechanisms;  

fast collisionless reconnection 

 



Relax the collisionallity assumption: introduce a tensorial pressure and the so-called:  

Chew Goldberger Law (CGL) model or double adiabatic law 

Conservation of adiabatic invariants: 

Gyrotropy; tensor in the local frame:  

The adiabatic closure assumes that wave phase speeds are much  

larger than particles thermal velocities : it is not a proper closure for the solar wind. 

Assume a simple Ohm’s law without Hall term and electron pressure gradient, and zero heat fluxes 

For large enough temperature anisotropies, existence of instabilities. 

Problem: CGL leads to wrong mirror threshold and does not provide stabilization at 

small scales 

along flow trajectories 

Chew et al., Proc. R. Soc. London A 236, 112 , 1956 



A MHD-like model for steady mirror structures 

Although the mirror instability is driven by kinetic effects, some properties of  
stationary mirror structures can be captured within the anisotropic  MHD,  
supplemented with a  suitable equations of state: isothermal or static limit 

A series of equations can be derived for the gyrotropic components of the even 

moments, and using the assumption of bi-Maxwellian distributions, simple 

equations of state can be obtained, which predicts the correct threshold of the 

mirror instability. 

 



Projecting the ion velocity equation along the local magnetic field (whose direction is  

defined by the unit vector     ) leads to the parallel pressure equilibrium condition 

for the (gyrotropic) pressure tensor  

where                          and 

 

Consider the static regime characterized by a zero hydrodynamic velocity and 

no time dependency of the other moments (Passot, Ruban and Sulem, PoP 13, 102310, 2006). 

 

Assume cold electrons (no parallel electric field)  

The above condition  rewrites: 

are the fundamental gyrotropic tensors. 

From the divergenceless of B = B    , one has 

with 

This leads to the condition 



We proceed in a similar way at the level of the equation for the heat flux tensor, 

by contracting with the two fundamental tensors       and         and get  

where the 4th-order moment is taken in the gyrotropic form 

Here,      refers to the symmetrization with respect to all the indices.  

One gets 



The closure then consists in assuming that the 4th-order moments are related  

to the second order ones as in the case of a bi-Maxwellian distribution, i.e.:  

and  

One finally gets  

These equations are solved as  

Similar equations of state were derived using a fully kinetic argument by  

Constantinescu, J. Atmos. Terr.  Phys. 64, 645 (2002).       

Equations actually also valid with warm electrons 

« Initial condition » 

at X=0 

Closure can be done  

at higher order 



FLR-Landau fluid  
 

Fluid model retaining Hall effect,  Landau damping and ion finite Larmor radius (FLR) corrections in 
the sub-ion range. Electron FLR corrections and electron inertia neglected. 
 
Landau fluids were first introduced by Hammett & Perkins (PRL 64, 3019, 1990) as a closure retaining 
linear Landau damping. 

 
The FLR-LF is an extension of the Landau fluid for MHD scales derived in Snyder, Hammett & Dorland, 
Phys. Plasmas 4, 3974, 1997). 
 
The fluid hierarchy for the gyrotropic moments is closed by evaluating the gyrotropic 4th rank 
cumulants and the non-gyrotropic contributions to all the retained moments, in a way consistent 
with the linear kinetic theory, within a  low-frequency asymptotics. 
 
The model reproduces dispersion and damping rate of low-frequency modes at the sub-ion scales. 
 
 
 

References: 
 
Passot  &  Sulem, Phys. Plasmas 14, 082502, (2007); Passot, Sulem & Hunana, Phys. Plasmas 19, 082113, (2012); 
Sulem & Passot, J. Plasma Phys. 81 (1), 32810103 (2015) 
 

First  3D  FLR-LF simulations of turbulence at ionic scales presented in  
Passot, Henri, Laveder & Sulem, Eur. Phys. J. D. 68, 207, 2014. 
see also 
Sulem, Passot, Laveder & Borgogno, ApJ  816:66 (2016). 



Alternative approach: gyrofluids  

               (Brizard 1992, Dorland & Hammett 1993, Beer & Hammett 1996) 

 

• Obtained by taking velocity moments of the gyrokinetic equation. 

 

• Nonlinear FLR corrections to all orders are captured. 

 

• Linear closure of the hierarchy needed as for Landau fluids. 

 

• All fast magnetosonic waves are ordered out: transverse velocity expressed in 

drift approximation. 

 

Both Landau fluids and gyrofluids neglect wave particle trapping, i.e. the effect 

of particle bounce motion on the distribution function near resonance. 



For the sake of simplicity, neglect electron inertia. 

 

Ion dynamics: derived by computing velocity moments from Vlasov Maxwell equations. 

rrr nm

B 

The FLR-Landau fluid model 

zero in the absence of collisions 

Not relativistic: no displacement current 



The pressure tensor is decomposed as follows: 

= B / |B|. 

 Electron pressure tensor is taken gyrotropic  

(considered scales >> electron Larmor radius) 

 and thus characterized by the parallel and transverse pressures  

 FLR corrections 



heat flux tensor 

work of the non-gyrotropic  

pressure force 

Exact equations for the perpendicular and parallel pressures 

Modelization of the heat flux tensor: 

with 

The tensor S writes: 

The vectors S// and S┴ are defined by and 



One has and 

One can write 

The  contribution of the tensor S in the pressure equations then reads: 

They are the only contributions to the gyrotropic heat flux tensor: 

At the linear level,  σr does not contribute to the heat flux terms in the equations for  

the gyrotropic pressures. 
 

Nonlinear expressions of σr in the large-scale limit given in Ramos, PoP 12, 052102 (2005) 



Equations for the perpendicular and parallel gyrotropic heat fluxes 

At this level some simplifications are introduced to reduce the level of complexity 
(see Ramos 2005 for the full set of nonlinear equations) 

 

Terms that involve the non-gyrotropic pressure and heat fluxes are kept only when 

they appear linearly 

Involve the 4th-rank gyrotropic cumulants:  

stand for the linear nongyrotropic contributions  

of the 4th-rank cumulants. 



The completion of this model requires the determination of: 
 
 
 closure relations to express the 4th-rank cumulants 
     (closure at lower or higher order also possible) 

 

                Only issue when dealing with the Large-Scale Landau fluid model 

                (Snyder, Hammett & Dorland, PoP 4, 3974, 1997). 

 

 

 (non gyrotropic) FLR corrections to all moments. 

A quasi-normal closure (obtained by taking                          zero)  

and with no FLRs leads to a system that does not include  

any form of dissipation.  

 

In the limit of zero collisions, fluid equations nevertheless contain a finite 

dissipation, associated to the phase mixing process. 



Phase mixing 
(from Hammett et al. Phys. Fluid B4 , 2052, 1992) 

𝑓 𝑧, 𝑣, 𝑡 = 𝑓0 𝑧 − 𝑣𝑡, 𝑣 𝐻(𝑡) exact solution: 

Consider 

Then (No damping) 

Take the first moment (density): 

Hence Time decay! 



How to introduce the proper form of dissipation in the fluid system? 

Simplest possible closure for the electrostatic problem 

 

Taking the mass conservation equation  

one can impose a Fick’s law of diffusion by imposing the higher moment u 

in terms of the previous moment n in the form 

Then 

Taking  ensures the proper decay law.  

The particle flux that in Fourier space reads  rewrites 

It is a nonlocal operator (Hilbert transform) along field lines 



The agreement with kinetic theory is better as the number of fluid 

moments is increased. 



Calculate the 4th-rank cumulants from the linearized kinetic theory,  
in the low-frequency limit:  (for a bi-Maxwellian d.f.) 
                               
 

In this case, the expansion is valid for:  

• quasi-transverse fluctuations 

• hydrodynamic scales with 

Lrk//

Lrk



1 

Lr : ion Larmor radius   

22
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Closure for the FLR-LF model at the level of energy-weighted pressures 



The kinetic expressions typically depend on electromagnetic field components 

and involve the plasma dispersion function (which is nonlocal both in space and 

time).  

 

These various expressions are  expressed in terms of other fluid moments  

in such a way as to minimize the occurrence of the plasma dispersion function.  

 

The latter is otherwise replaced by suitable Padé approximants, thus leading to 

local-in-time expressions. At some places, a Hilbert transform with respect  

to the longitudinal space coordinate appears, that modelizes Landau 

damping. 

This procedure ensures consistency with the low-frequency linear 

kinetic theory, up to the use of Padé approximants. 



Hierarchy closure 

from kinetic theory: 

Using 4-pole Padé: 

Using 2-pole Padé: 

one gets: 

one gets: 

These formulas can be expressed in terms of lower order fluid moments. 

R: plasma response function 

For each species  

Larmor radius  

Bessel modified function  

In physical space: 

negative Hilbert 

transform: signature 

of Landau resonance 

at large scales 

At scales >> Larmor radius 

=1     =0   

overline: instantaneous 

space average 

prime: fluctuations 



How to deal with the operator H? 

Accurately retaining the magnetic field distortion requires the replacement of the Hilbert  

transform along the ambient field by an integral along the individual magnetic field lines,  

which is hardly feasible on the present day computers. 

Replace H by: 

It preserves the zero-th order character of this operator. 

It is exact in the linear limit (whatever the direction of  

the ambient field). 

It is generically non-singular on the numerical grid. 

where            is the instantaneous space average of  

Temperature homogenization 

along field lines is more efficient  

for electrons. 

Temperature can however vary 

significantly from one field line to 

the other. 

Ion parallel temperature Electron parallel temperature 



At which level is it appropriate to close the hierarchy? 

 

Keeping higher fluid moments allows one to account for distortions of the  

distribution function and to keep more fluid nonlinearities. 

 

It also better mimick the cascade in velocity space with a possible stochastic plasma 

echo (Schekochihin et al. JPP 82, 905820212,  2016) 

 

Taking a higher order Padé approximant leads to more precise approximations.  

But, except in particular cases, all the ζ terms cannot be eliminated, thus leading to 

closure relations in the form of linear PDEs instead of algebraic relations. 

 

This is thus analogous to closing the fluid hierarchy at a higher moment, possibly 

with a Padé of lower order.  

 



Several choices of Padé approximant are possible.  

For the case of the three-pole Padé, we choose one that 

has a globally better fit, even if another one performs  

slighlty better at large scales. The four-pole Padé appears excellent  

throughout the whole range of ζ. 

Imaginary part for R3 
Imaginary part for R4 Real part for R4 



Comparaison between Vlasov and Landau fluid simulations 

Vlasov (A. Mangeney and F. Califano) 

n 

Te 

Parallel electron 

heat flux 

x

Te






Landau fluid 

Domain size:  

20 000 λe 

Initial condition 

Diffusion of a temperature gradient 



Two methods to determine the non-gyrotropic elements of the tensors 

 
I. Solve the (coupled) algebraic equations that result from the projection 

       the tensorial pressure equations, orthogonally to the gyrotropic  "directions". 

At the level of the pressure: 

The solvability conditions lead to the dynamical equations for pressures and heat fluxes 

Πr 



Since П also appears in the r.h.s., this procedure requires an expansion in a small parameter, 

usually taken as the time and space scale separation with the ion gyroscales.  
 

It follows that (see e.g. Schekochihin et al. MNRAS 405, 291–300 (2010) for a simple derivation) : 

with: 

and also for the heat fluxes (only the S terms for the protons are displayed): 



A large-scale model is obtained with closures of the form 

with  

or, possibly, at the next order…  



These closures provide a satisfactory model for scales up to   ≈10 

when temperature anisotropy is not too large. 

Frequency and damping rate of 

a kinetic Alfvén wave 

propagating in a direction 

making an angle θ = 89.94◦, 

versus k⊥rL, for equal and 

isotropic ion and electron 

temperatures, and β = 0.1 (top), 

1 (middle), 10 (bottom). 



To preserve local rotational invariance one is led to write: 

with 

and 

with 

A more sophisticated treatment is necessary for the D2 term: 

perpendicular pressure balance is to be imposed and q┴ has to be obtained form T 

One proceeds similarly, for the other tensors (heat fluxes, energy-weighted pressures,…). 

functions of transverse wavenumbers 

involving modified Bessel functions 

A more direct approach directly using kinetic theory and also valid at small scales 

One can also write: 



•  The model conserves the total energy: 

    Conservation of energy is independent of the heat fluxes and subsequent equations,  

    but requires retaining  the work done by the FLR stress forces.   

 
•  Implementation of the Landau damping via Hilbert transforms, and also of the 

   FLR coefficients as Bessel functions of k┴ρ, is easy in a spectral code. 

 

•  Electron Landau damping is an essential ingredient in many cases 

   (limiting the range of validity of isothermal electrons often used in hybrid simulations). 

•  All linearized fluid equations are satisfied when plugging the fluid moments directly 

   calculated from the LF kinetic theory, except the perpendicular velocity equation: it 

   reduces to the perpendicular pressure balance condition, as in gyrokinetics. 



Dispersion relation of low frequency modes: 

comparison with linear kinetic theory 



Mirror modes:  



Frequency and damping rate of Alfvén waves:   

  

oblique propagation 

Does not capture 

resonance1 

quasi-transverse propagation 
(Kinetic Alfvén waves) 

frequency damping rate 

frequency damping rate 

θ≈84° 

θ=89.9° 

1 : the model also captures fast waves but only up  

to scales where resonance appears. 



Kinetic Alfvén waves 

eigenvectors 

KAW, θ=89° 

β//=2 

ap=ae=1 

τ=1 

Eigenmode 

Magnetic compressibility 

x component 

y component 

z component 

electric  

field 

magnetic   

field 

velocity 

field 

Comparison FLR-Landau fluid with full kinetics 

FLR-LF 

kinetic theory 



magnetic compressibility: 

electric field polarization:  
left polarized wave 

right polarized wave 

Proton beta is 0.1, 0.5, 1, 2, 4, 10 

polytropic 

bi-fluid 

LS-LF 

FLR-LF 

Polytropic bi-fluid : incorrect even at large  

scales; Landau damping is not sufficient to  

reproduce kinetic theory. 

FLR-Landau fluid provides a precise  

agreement with kinetic theory  

(Hunana et al. ApJ 766:93, 2013). 

 

Anisotropy of pressure fluctuations alone 

introduce a major change in wave  

properties! 

magnetic compressibility polarization  



 
 
Rather rigorous fluid models can be derived from the gyrokinetic equation. 
 
Few contain enough ingredients for β≈1 (e.g. allow for B‖ fluctuations ) 
 
One example is the one by Brizard : PoF 4, 1213 (1992). 
 
Despite some shortcomings this model constitutes an interesting starting point to derive limiting 
equations valid for scales large compared with the electron Larmor radius and small 
compared with the ion Larmor radius. 
 
Interestingly the same equations can be derived from the FLR-Landau fluid model in the weakly 
nonlinear limit, assuming an equilibrium state with isotropic temperature. 
 
This provides a way of validating the semi-phenomenological character of FLR-LF models. 
 
At small scales: 
 
gyroaveraging (or cancellations of fluid quantities with FLR corrections in the FLR-LF model)    
 
  Ion velocities and ion temperature fluctuations become subdominant at small scales 
 

Validation in the weakly nonlinear regime 



Decay simulations in 3D:  

Reduction of compressibility and  

parallel transfer by Landau damping 

P. Hunana, D. Laveder, T. Passot, P.L. Sulem, D. Borgogno, ApJ 743:128  (2011) 



3D MS-Landau fluid simulations in a turbulent regime 
 (simplified model)  (Hunana, Laveder, Passot, Sulem  & Borgogno,   ApJ  743, 128, 2011). 

Freely decaying turbulence   (temperatures remain close to their initial values) 

 

 Isothermal electrons 

 Initially:   

       no temperature anisotropy;  

       equal ion and electron temperatures 

       incompressible velocity. 

 
Pseudo-spectral code  

Resolution: 1283  (with small scale filtering) 
 

Size of the computational domain: 32 π inertial lengths in each direction 

Initially, energy on the first 4 velocity and magnetic Fourier modes kdi= m/16 (m=1,…,4) 

with flat spectra and random phase. 



Compressibility reduction by Landau damping 

Comparison of MS-Landau fluids and Hall-MHD simulations 

Important in solar wind context: Although solar wind is a fully compressible medium,  

the turbulent fluctuations behave as is there were weakly compressible. 



Spectral anisotropy 
Hall-MHD  

FLR-Landau fluid  

  Transverse directions                          Parallel direction               

Kinetic 

energy 

Magnetic  

energy 

Strong reduction of the parallel transfer 



Damping of slow modes 

Strong damping of sound waves in oblique directions as well,  

but not in the perpendicular one. 



Non-universality at sub-ion scales 



Magnetic spectrum in the solar wind 
(Cluster observations) 

Sahraoui et al., ApJ 777, 15, 2013  

Spectral exponent at sub-ion scales, excluding the transition range 

“the slopes of the spectra in the dispersive range (i.e., [fρi , fρe ]) cover the 
domain ∼ [−2.5,−3.1] with a peak at ∼ −2.8”, while inertial range slopes: -
1.63±0.14  (Smith at al. ApJ 645 L85 (2006) using ACE) 



3D Electron-MHD in the presence of a strong magnetic field  
(Meyrand & Galtier, PRL 111, 264501, 2013) 
 

Existence of  a            spectral range  
 
2D simulations in the plane perpendicular to the ambient field 
Hybrid-PIC (Franci et al., ApJL.. 804, L39, 2015)      Hybrid-eulerian (Cerri et al. ApJL 2016) 
 

-5/3 spectrum  at the MHD scales                               B slope in sub-ion range 
-3   spectrum at the sub-ion scales                              between -8/3 and -3 
   

- 8/3 

Gyrokinetic simulations  

(Howes et al., PRL 107, 035004, 2011) (Told et al., PRL 115, 025003, 2015) 



3D full PIC whistler mode simulations  
with various level of energy fluctuations (Gary et al., ApJ 755, 142, 2012)  

“Increasing initial fluctuation amplitudes over  
0.02 < ε0 < 0.50 yields  …  a consistent decrease in 
the slope of the spectrum at k ┴ c/ωe <1". 
 

In apparent contrast to solar wind observations of 
Smith et al. (2006), Bruno et al. ApJL (2014). 
(several parameters probably simultaneously 
changed and/or problem with definition of 
fluctuation amplitude) 



Main points to understand, focusing on sub-ion spectral slopes 
 
1. The observed spectra are steeper than the -7/3 slope predicted by most theories  

based on critical balance arguments. 
 

2. Except in simpler models, the slopes display a rather large scatter. 
 
Questions: 
 
- What is the correlation between the spectral slopes and: 

 
   - the amplitude of  magnetic field fluctuations 
   (to be defined properly) 
 
   - the strength or transfer rate of the turbulence 
   (as e.g. defined by extensions of Karman-Howarth equation 
   as in Banerjee & Galtier PRE 87, 013019 (2013)) 
 
   - the beta parameter 



is conserved. 

Power counting gives  exponent  -7/3 
but numerics suggests  -8/3 ≈ 2.7 
(viewed as intermittency corrections)  

numerical dissipation 
range 

Need to perform large-scale simulations aiming at testing theories. 
 
Such simulations have been done using a semi-phenomenological model  
assuming Boltzmanian ions and electrons:  
Boldyrev & Perez , ApJL, 758, L44, 2012; see also Schekochihin et al. ApJ Supp. 182, 310 (2009) 

Spectrum independent of simulation parameters 

Reduced models 



 

Influence of Landau damping  
(Howes et al. JGR 113, A05105, 2008; PoP 18, 102305, 2011): 
 

Balance between energy transfer and  Landau dissipation: 
 
leads essentially to energy flux                                and   
       
For appropriate parameters gives the impression of a steeper power law. 
 
Revised version (Passot & Sulem Ap.J. Lett.  812: L37, 2015) predicts a non-universal 
correction to the  power-law  exponent. 
 

 
Need to include both ion and electron Landau damping 
 
 
Turn to the FLR-Landau fluid model to perform runs with varying parameters 



Alfvenic turbulence 

The system is  driven  by a random forcing 

KAW frequency of wavevector kn 

Propagation angle : 80o - 86o 
KAWs are generated by resonance 

Driving is turned on (resp. off) when the sum of  kinetic and magnetic energies  is below (resp. 
above) a prescribed threshold: prescribed amplitude of the turbulence fluctuations. 
 

Initially, equal isotropic ion and electron temperatures with βi = βe = 1 
 

Use of a Fourier spectral method in a 3D periodic domain , 5.7  to 14  times more extended in 
the parallel direction than in the perpendicular ones. 
 

Realistic mass ratio  sub-stepping of temporal scheme for electron temperature/heat flux 
equations.  
 
 

Weak hyperviscosity and hyperdiffusivity  (k8 operator) are supplemented 
• to ensure the presence of a numerical  dissipation range,  
• to mimic the effect of Landau dissipation at ion scales not retained in the simulation 
 (do not affect spectral exponents) . 
 
 

Resolution of 1283 (up to 5122x256) points before aliasing is removed. 



Simulation at β=1 including a Kolmogorov range.  
Clear spectral break near k ┴rL =1  
 
Flat density and Bz spectra at large scales that tend to asymptote the B┴ spectrum  
in the sub-ion range. 

-5/3 

-2.45 



Simulations concentrating on the sub-ion range, performed for various amplitudes of 
turbulent Alfvenic fluctuations,  and various propagation angles. 

Run A+ Run A Run B80 Run B83 Run B86 

Angle of injected KAWs 80o 80o 

 
80o 

 
83.6o 

 
86o 

 

rms of v ┴ and B ┴ 0.2 0.13 0.08 0.08 0.08 

L┴/L// 

 
0.18 0.18 0.18 0.11 0.07 

rms of resulting density 
fluctuations 

0.045 0.03 0.014 0.016 0.017 

Transverse magnetic 
spectrum exponent 

-2.3 -2.6 -3.6 -2.8 -2.3 

𝐴 = (𝑘𝑧/𝑘0)(𝐵0/δ𝐵┴0) 0.9 1.4 2.2 1.4 0.9 

KAW modes driven at |k di|  =0.18 (the largest scales), and  propagation angles with the 
ambient field  of 80°, 83.6°and 86° (varied by changing the parallel size of the domain). 



A main result:  the dynamics is strongly sensitive to the nonlinearity parameter 

ratio of the nonlinear frequency (of the transverse dynamics) to the kinetic Alfvén  
wave frequency (along the magnetic field lines) 

(constructed from electron velocity) 

given by linear kinetic theory 

:  wavenumber along the magnetic field lines 
   (to be defined) 



Turbulence anisotropy 
 
Parallel wave number along the local magnetic field line of an eddy with  
transverse wavenumber       (Chow & Lazarian, ApJL  615, L41, 2004) 

Parallel wavenumber defines the inverse correlation length along magnetic field lines, 
at  a specified transverse scale. 



A+ 

A 

B80 

B83 

B86 

k ┴rL  

For small amplitude fluctuations, (B80),  kǁ is rather flat, suggesting  weak turbulence. 
 
For larger amplitudes, kǁ  grows as a power law (as expected in a strong turbulence regime), 
and saturates at small scales. 



k ┴rL  

EB┴
(k ┴) 

k ┴rL  

Spectra are steeper when the nonlinearity parameter is smaller. 

Slopes : 
-2.3 
-2.3 
-2.6 
-2.8 
-3.6 

Spectra averaged over 150 Ωi 
-1 

 in the quasi-stationary regime.  

When the parameter                                                   is small enough critical balance is satisfied.  

Values of A: 
0.9 
0.9 
1.4 
1.4 
2.2 



Magnetic spectra obtained with a CGL model  
with Hall effect (but no Landau damping),  
display a -7/3 spectrum whatever  
the 𝝌 parameter. 
 
The slope variation results from Landau 
damping. 

-7/3 

-7/3 

CGL 

FLR-LF 

CGL 

FLR-LF 

-2.8 

-3.7 

k ┴rL  



Magnetic compressibility spectrum 

Magnetic compressibility from Cluster data 
(Kiyani et al. ApJ 763, 10, 2013) 

k ┴rL  

θ = 89.99°  (in order to accurately capture large k ┴)  

  β =0.1 

  β = 1 

  β = 10 
  β = 4 

  β =0.5 

  β = 2 

Hunana, Golstein, Passot, Sulem, Laveder & Zank,  

Astrophys. J. 766, 93 (2013); Solar Wind 13 Proceedings. 

from linear theory 



Structures of the electric current: 
 

• Usual MHD leads to current sheets 
 

• Current filaments obtained in incompressible Hall-MHD  
       (Miura & Araki , J. Phys. Conf. Series 318, 072032, 2011)  

        and in Electron MHD  
        (Meyrand  & Galtier, Phys. Rev. Lett. 111,  264501, 2013),   

       due to Hall term. 
 

 
Both filaments and sheets are observed. 



Current Density and ion velocity field lines 

Run A 

Both current sheets and filaments. 
 



A phenomenological model for KAW turbulence   

Extend analysis of Howes et al. (2008, 2011) by  
 

• Retaining  the influence on the energy transfer time, of the process of ion 
temperature homogenization along  the magnetic field lines induced by 
Landau damping. 
 

• Improving description of nonlocal interactions. 

Stretching frequency Alfvén wave frequency  

Main results: 
 
• Critical balance establishes gradually as         increases, permitting a  
      weak large-scale turbulence to become strong at small enough scales. 
 
• Non-universal power-law spectrum for strong turbulence at the sub-ion scales 
     with an exponent which depends on the saturation level of the nonlinearity 
     parameter                                    , covering a range of values consistent with  
     solar wind and magnetosheath observations. 
 

T. Passot & P.L. Sulem, Astrophys. J. Lett., 812, L37 (2015). 



For the sake of simplicity , concentrate on the case where nonlinear interactions are local, 
i.e. energy spectrum not too steep, which is the case for β≈ 1. 
More general case addressed in Passot & Sulem (ApJL, 2015) 

 

Involved frequencies: 
Nonlinear frequency:  ωNL = Λ (k ┴

5di
2Ek)

1/2   (                          , vek=kbk,                     )       )
 

 

                      Λ  : numerical constant of order unity ; Ek ≡E(k ┴) 
 
Frequency of KAWs propagating along the distorted magnetic field lines: 
 

KAW Landau damping rate:   

Homogenization frequency (for each particle species) :  

(where μ is a proportionality constant of order unity) 

In the case of ions, comparable to other inverse characteristic time scales. 

The corresponding frequency is much higher in the case of electrons (due to mass ratio), making 
electron homogenization along magnetic field lines too fast to have a significant dynamical effect. 



Determination of the inverse transfer time or its inverse ωtr 

Proceeding as in the spirit of the two-point closures for hydrodynamic 
(Orzsag 1970, Sulem et al. 1975, Lesieur 2008) or MHD (Pouquet 1976)  
homogeneous turbulence, 
 
 

Turbulence energy flux:  

where C is a negative power of the Kolmogorov constant. 

It follows that  

where the homogenization frequency contribution becomes negligible  
at scales for which  



Assuming a critically balanced regime  where   

one has     ωNL= Λ ωW 
 

leading to identify the constant Λ with the nonlinearity parameter. 
 
One thus gets  

Here, due to Landau damping, ε is a function of   

and decays along the cascade. 

Phenomenological equation for KAW’s energy spectrum when  
retaining linear Landau damping (Howes et al. 2008, 2011)  

transfer Landau 
damping 

driving term 
acting at large scales 

Steady state,  
outside the  
Injection range 



In a critically balanced regime,  this equation is solved as   

From linear kinetic theory, 

 
 

when β = 1 

This leads to  

with  

Finally,  

Involves proportionality constants C and μ which 
are to be empirically determined by prescribing  
for example that the exponential decay occurs at 
 the electron scale. 

The correction in the exponent is not universal: expected when dissipation and nonlinear 
transfer times display the same wavenumber dependence (Bratanov et al. PRL 111, 075001 (2013)). 

Leads to a log term 



Differential system: 
  

• Retains nonlocal interactions (relevant for relatively steep power-law spectra) 
 
• Permits variation of the nonlinear parameter along the cascade 
     and transition from large-scale weak turbulence to small-scale strong turbulence 

The functions γ and ω are obtained using the WHAMP software 

(by electron velocity gradients)    

rate of strain due to all the scales larger 
than 1/k ┴  (Elisson 1961, Panchev 1971) 

Transverse magnetic spectrum 

Local expression recovered when the  
Integral diverges at large k ┴ 

More quantitative analysis by numerical simulations of the differential system. 

For example: 

is replaced by: 



Solar wind observations 

Sub-ion exponent  depends on  the saturation value 
Λ of the nonlinear parameter. Range of variations  
comparable to observations. 

Range for extended sub-ion power law 

β=1 

┴ 

Phenomenological model 

Correlations were made between 
slope in transition range and power in 
the inertial range: higher power leads 
to steeper spectrum  
Bruno et al. ApJL 739 L14 (2014) 

 
                 Present work 
 
Two comments are in order: 
 
1. does not consider a transition range 
2. the correlation is made with the  

nonlinearity parameter in the sub-ion 
range 



When forcing is at a (larger) scale such that k┴di=0.18/4 

 

δB/B=0.08 

Angle= 83.6o 

δB/B=0.13 

Angle= 83.6o 

Sub-ion slope very close in the two cases 

Correlation of slopes vs. fluctuation amplitude depends at scale at which amplitude 

is measured. This is also seen in solar wind observations  



Main features of the phenomenological model: 
 
• Introduction of a new time scale associated with the homogenization process along 

magnetic field lines, induced by Landau damping 
 
• The model predicts a non-universal power-law spectrum for strong turbulence at the sub-

ion scales with an exponent which 
  
      - depends on the saturation level of the nonlinearity parameter, 
 

      -  covers a range of values consistent with solar wind and magnetosheath observations. 
 
 
3D FLR-Landau fluid simulations of Alfvenic turbulence at the ion scales   
 

• Spectral index is not universal 
    (varied by changing amplitude and  angle of driven KAWs). 
       

• Critical balance is satisfied when  fluctuations are strong enough. 
 

• Influence of Kolmogorov range on sub-ion range and of β still to be analyzed. 
 

Summary 



Conclusions 

In situations where the distribution function is not too far from a Maxwellian, 

it is possible to recourse to fluid models to describe low frequency phenomena. 

 

In order to address small-scale phenomena in directions quasi-perpendicular to 

the ambient magnetic field in plasmas with temperature anisotropy, fluid models  

should contain a minimum amount of complexity:  

 

 - equations for the fluid hierarchy up to heat fluxes 

 - finite Larmor radius corrections with the correct dependency 

   on wave numbers (Bessel functions) 

 - closure that retains Landau damping for both ions and electrons. 

 

The FLR-Landau fluid model can capture plasma heating, an issue of importance 

in accretion disks and in the intra-cluster medium, where the micro-instabilities  

have large-scale consequences. 


