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Turbulence: 2 non reconcilable viewpoints 

• Landau (1944):  
Turbulence = superposition of a growing number of modes  
with incommensurate oscillation frequencies, resulting from  
an infinite number of bifurcations with increasing Re 
 
 
 
 
• Ruelle and Takens (1971): 
Turbulent states = described by a small  number of  
degrees of freedom, i.e. by a low dimensional  
"strange attractor" on which all turbulent motions  
concentrates in a suitable phase space 
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Lorenz attractor (63) 



Turbulence and symmetry breaking (1) 

• Transition to turbulence: succession of symmetry  

  breakings/bifurcations of the flow 

 

→ 2 main types of transitions: 
• supercritical, continuous 
 Ex: Rayleigh Bénard convection or Taylor Couette flow 
 
• subcritical, discontinuous, finite amplitude solutions  
 Ex: plane Couette or Taylor Couette flow  
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Transition to turbulence in Taylor Couette  

 

 

laminar 

stationary pattern   

oscillating pattern 

chaos 

turbulence 

…… 

End of story?  
Andereck et al. JFM 86 Re 
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Transition to turbulence in Taylor Couette  
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Andereck et al. JFM 86 Re 
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Turbulence and symmetry breaking (2) 

• at “large” Reynolds number Re: 

 Turbulence is fully developed (K41, intermittency..) 

 Symmetries are statistically restored (Frisch 95) 

 

• However, at large Re, observation of new symmetry 

  breakings which concern the flow statistics : 

Turbulent bifurcations, instabilities…chaos? 

          → in natural systems 

              → in laboratory experiments 
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Atmospheric circulation 

Zonal Blocked 

Weeks et al. Science 

278, 1598 (1997) 
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Persistent states, abrupt transitions. Scales: ~500 km, 2-5 years. 
Known since 1960s (Taft 1972). 

M. Kawabe, JPO, 25, 3103 (1995) 

Oceanic persistent states : “Kuroshio” stream 
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Global oceanic circulation and D/O events 
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Erratic inversions of the magnetic field  

Earth VKS experiment 11 



Natural systems characterized by : 
• strongly turbulent flows 
• several mean large scale states 
• transitions/bifurcations towards or between these 

mean states on temporal scales >> fluctuations. 
 
 

Simple model experiments:   
• stability of the turbulent flow ?  
• transitions:  
      → low dimensional dynamical systems ? 
      → chaos? 

Large scale bifurcations in turbulence  
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Turbulent bifurcations in lab experiments  

• geophysical experiments: 
  Weeks et al. Science (1997) 

• RB convection at high Ra : 
   Chilla et al., EPJB (2004) - Roche et al. NJP (2010) - Grossmann and  

   Lohse, POF (2011) - Alhers et al. NJP (2011) - van der Poel et al. (2011) 

• turbulent rotating RB convection: 
   Stevens et al. PRL (2009) - Weiss et al., PRL (2010) 

• spherical Couette flow 
   Zimmermann et al. (2011) 

• Taylor-Couette flow 
   Lathrop et Mujica (2006) 

• von Karman flows 
  VKS (2007)  

  de la Torre and Burguete (2007, 2012) 

• wake behind a sphere 
  Cadot et al. (2013) 

• …… 
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Turbulence or chaos? 

However  
• no complete theory of these transitions 
• all tentative to find the strange attractor of a 

turbulence state (atmosphere or climate) failed so 
far: 

    - Nicolis 84: yes 
     - Grassberger 86: no 
     - Lorenz 91: unlikely!  
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Turbulence or chaos? 

End of the story? 
abandon all hope to apply tools from dynamical systems 
theory to a turbulent flow, except for transition to 
turbulence? 
 
No! 
 
→ in this talk:  
try to reconcile the 2 points of view in fully developed 
turbulence 
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A model experiment: the von Karman flow 

• flow between 2 rotating impellers 
•Re = 102 to 106 (water and water-glycerol) 
         107 (Sodium) and  108 (liquid Helium)  

 
• inhomogeneous and  intense turbulence 
 

• different forcings: + - 
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Reynolds  number  

 

 

Rotation number  

(System asymmetry) 

Experimental setup 

2 control parameters 
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• SPIV 
3 velocity components 
in a vertical plane 

 
 up to 50 000 fields 

 
 freq max=15 Hz 

 
 resolution = 2 mm 

Measurements  

• Torque measurements 
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Transition to turbulence in von Karman 
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Re = 90 
Stationary axisymmetric 

 meridian plane: 

poloïdal 

recirculation 

Tangent 

plane : 

shear 

layer 

Re = 185 
m = 2 ; stationary 

Re = 400 
m = 2 ; periodic 

First bifurcations and symmetry breaking 
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Time spectra  as a function of Re  

Re = 330 Re = 380 Re = 440 

220 225 230 

0.2 

0.1 

Periodic Quasi-Periodic Chaotic 



Time spectra  as a function of Re 

Re = 1000 Re = 4000 
Turbulent Chaotic 

2000 < Re < 6500 

Bimodal distribution : 
signature of the 
turbulent shear 

22 



Rec= 330 Ret = 3300 

Developed turbulence 

Globally supercritical 
transition via a  
Kelvin Helmholtz type  
instability of the 
shear layer  and 
secondary bifurcations 

Transition to turbulence:  
azimuthal kinetic energy fluctuations 

Ravelet et al. JFM 2008 23 



Turbulent von Karman at Re> 5000  

Instantaneous Flow Mean flow 
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Transition to turbulence in von Karman 
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Eckhaus type instability (1) 

Energy spectrum 
     (Re= 106) 

Herbert et al. Phys. Fluids 2013 

+ sense, fully turbulent regime, Kp constant, and yet… 

Cut at 
kz=0 

Evolution of kx with Re  

m = 0    1     2?            3 
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Eckhaus type instability (2) 

 → parity change (m change)  
 
• cf. laminar/turbulent transition 
 
• related  to the number of mean 

turbulent vortices in the shear 
layer 

Re= 104: von Karman turbulent flow « stable » (no m 
change up to Re = 106) …  
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Transition to turbulence in von Karman 
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Re 

θ 28 



Transition of the turbulent mean state 

→ response to an external symmetry breaking: θ≠0 

• sense -: abrupt transition 

• sense +: soft transition 

Ravelet et al. Phys. Rev. Lett. 2004 

Saint-Michel et al. Phys. Rev. Lett. 2013 

                             NJP 2014 

Thalabard et al. NJP 2015 

Cortet et al. Phys. Rev. Lett. 2010 

                    J. Stat. Mech. 2011 
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Soft transition  
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Global angular momentum I = f(θ) 

Symmetry parameter: 

Re = 120 

Re = 67 000 

Re = 890 000 

)(.

)(1
I(t) 
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Susceptibility                       larger at intermediate Re 

Re = 120        → χI = 0.24 

Re = 67 000   → χI = 42 

Re = 890 000 → χI = 9 

Global angular momentum I = f(θ) 

0
 I









I
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Susceptibility: χ = f(Re) 

Divergence of the susceptibility around Re = Rec ≈ 40 000 
                               → phase transition? 

Rec 

Rec 
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Mean field critical divergence 

Control parameter: turbulence « temperature » 

Castaing, J. Phys. II (1996)  

Analogy with ferromagnetic systems 

Magnetization M       angular momentum I  
Applied field H          symmetry param. θ 
Temperature T          Reynolds number Re 
 
 

with Rec = 40 000  

    T<Tc        T=Tc       T> Tc 
            Magnetization 
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Abrupt transition 
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Turbulent Bifurcation: 
2 different mean flows 
exchange stability.  
A symmetry is broken 

Bifurcated flow (b) : no more shear layer 

two cells 

one state 

one cell 

two states 



 coexistence of the 3 states only in 
turbulent regimes 



VK flow: multiplicity of solutions 

Rec= 330 Ret = 3300 

Kp= Torque/ρRc
5 (2π f)2 

 Re-1 



Stability of the symmetric state 

Statistics on  
500 runs for 
different  θ 

Cumulative distribution 
functions of bifurcation 
time tbif: 
 
P(tbif>t)=A exp(-(t-t0)/τ) 
 
• t0f ~ 5 
• τ : characteristic bif. time 
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Stability of the symmetric state 

 

• symmetric state  
marginally stable 
τ → ∞ when θ → 0 

exponent = -6 
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 Turbulent bifurcation 

Torque difference Kinetic momentum 

(s) (b1) (b2) 

(s) 

(b2) 

(b1) 

Hysteresis for Re > 16 000 
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 Evolution of ΔKp for different Reynolds 

Re= 800 - 3000 – 5800 - 15300 - 195000 
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 Ferromagnetism 
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 Evolution of ΔKp for different Reynolds 

Re= 800 - 3000 – 5800 - 15300 - 195000 

ΔKp,0  
Δθr 
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 Ferroturbulence 

cf. magnetization 
M0 at H=0 

cf. coercitive field 
Bc at M=0 

45 



 In liquid Helium (SHREK experiment) 

Collaboration with ENS Lyon, SBT, Neel, LEGI, LUTh (EuHIT) 

Superfluid He 

Liquid He 
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Transition to turbulence in von Karman 
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   Speed control 
 
Asymmetry control: θ 

 

 

 

 

Conjugate parameter: γ 

 

Turbulence and forcing protocols 

 Torque control 
 
Asymmetry control:  γ 
 

 

 

 

Conjugate parameter: θ 
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 Turbulent bifurcation: speed control 

Speed control: forbidden γ zone 49 



 Turbulent bifurcation: torque control 

torque control: new mean states accessible 

torque 
speed 
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 Turbulent bifurcation: torque control 

3 states (attractors) (s*) (b*) (i*) in the θ pdf and the joint (f1,f2) pdf 

(s*)  

(i*)  

(b*)  
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 Dynamical regimes: torque control 

Impeller speed: 

f1 

f2 

 

 

 

γ = -0.016 

γ = -0.046 

γ = -0.067 

γ = -0.089 

γ = -0.091 

γ = -0.010 
Re=500 000 

52 



 Dynamical regimes: torque control 
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 Dynamical regimes: torque control 
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 Dynamical regimes: torque control 
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 Dynamical regimes: torque control 
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 Torque control: mean velocity fields 

Stability of turbulent states depends on forcing protocol! 57 



 Experimental time series 



 Experimental turbulent attractor 

γ=0.067 

SupplementaryVideo.mp4


Classical chaos Stochastic chaos 

Instantaneous velocity 
 
Bifurcation = 
Breaking of rotational 
symmetry 
 
 
Chaos 
 
Attractor 
 
N=dimension of attractor 
 
 

Mean velocity 
 
Bifurcation = 
Breaking of R symmetry 
of mean flow 
 
Chaos with noise 
 
Stochastic Attractor 
 N=dimension of attractor+ 

dimension of noise 

 Torque control: chaos? 

Yes but shift of paradigm to stochastic chaos 



 Modelisation: stochastic Duffing attractor 

minimal dynamical system model (not reducible to SDE) 
- autonomous oscillator at frequency f0 
- dynamics of γ(t) induced by the turbulent fluctuations 

represented by a stochastic force.  
- θ → - θ symmetry excludes the presence of a quadratic non-

linearity 
 

Stochastic Duffing equations, with two variables 𝑥 (exp: θ ) and 
y = 𝑥 ,  with random forcing 𝑧 (exp: dynamics of γ(t) ) obeying: 
 

Control parameter:  
       μ (exp: γ) 



 Comparison Turbulent & Duffing attractor 



 Comparison with Duffing attractor 

Effective dimension: 
- Turbulent attractor =10 
- Duffing attractor = 9 

 
Lyapounov exponents (≠ deterministic Duffing) 
 



 Low dimensional turbulence? 

→ in turbulent von Karman flows: 
 
- instability of turbulent states f(Re, symmetry,forcing) 
- multiplicity of solutions, depending on forcing protocol 
- possible transitions between these solutions:  
  1st or 2nd order like 
- emergence of low dimensional dynamics  
- turbulent chaotic attractors  
 
 

                           Chaotic turbulence? 
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