

Dust particles from comet 67P/Churyumov-Gerasimenko analyzed by COSIMA

Cécile Engrand for the COSIMA Team

rosetta

67P/Churyumov-Gerasimenko

OSIRIS NAC Image Aug. 03, 2014

MIDAS

Composition volatiles/dust/nucleus : ROSINA, COSIMA, VIRTIS

- 3 dust instruments on Rosetta
- Composition : COSIMA

GIADA

COSIMA

Merouane et al., 2015 (SWT Rosetta)

Dust flux (GIADA)

- Low speed (a few m/s)
- Showers of particles
- Detection of 2 types of particles :
 - Compact (0.03 1 mm), density: 800–3000 kg/m³, consistent with a variety of minerals or mixtures of minerals.
 - 'fluffy aggregates' (0.2 2.5 mm), density < 1kg/m³ sub-micron sized grains with void spaces in between.

(Rotundi et al. 2015)

Sub-um image of comet dust (MIDAS)

- Atomic force microscope
- Very fluffy textures reminiscent of IDPs/MMs

Composition of comet dust (COSIMA -COmetary Secondary Ion Mass Analyzer)

Instrument COSIMA XM. Crédits : MPE/MPS/vH&S

COSIMA : COmetary Secondary Ion Mass Analyzer

TOF – SIMS : Time of Flight – Secondary Ion Mass Spectrometry Surface analysis

OSIM/

Both positive and negative mode: target at ground & extractor at +/- 3 kV

GWF CSNSM Universität

lisa

Footprint of the pulsed ion beam: 35 × 50 \mum²

🗰 FMI 🥿 👘 vH&S 💿 esa 🌉 🕬 🍙

- Spectral resolution : m/∆m ≈ 1400
- Mass range : from 1 to 1000 amu

AS) @

Aug 17, 2014 target 1D0

grazing incidence illumination (right)

target 1 x 1 cm²

Y. Langevin K. Hornung

Aug 24, 2014 target 1D0

grazing incidence illumination (right)

> cometary dust

target 1 x 1 cm²

Y. Langevin K. Hornung

IAS . ME

3D0 Target Exposed 11 Aug 12 Dec 2014

COSISCOPE image 21 Nov. 2014

After 15 weeks exposure in the coma of 67P/C-G.

http://blogs.esa.int/rosetta/2015/04/16/cosima-meet-the-family/

1D0 Nov. 7, 2014

1D0 Sep., 2016

1C7 Nov. 11, 2015

Grains lists (S. Merouane MPS)

								Running			STP SIMS	STP SIMS
Х	Υ	ID	Rank	area (px²)	area (um²)	First Name	Last Name	number	Target	Lost	pos	neg
2732	7255	6	5	16	3136	Francois	Enonvesi	2	1D0	(Orivesi)	16,21	16,21
3952	7227	7	5	35	6860	Boris	Enonvesi	2	1D0	(Orivesi)	16,21,105	16,21,105
3286	3943	8	4	13	2548	Gerhard	Enonvesi	2	1D0	(Saimaa)	16	16
3494	4788	9	0	6	1176	Sandra	Enonvesi	2	1D0	0	0	0
3841	4913	10.1	0	8	1568	Oliver	Enonvesi	2	1D0	0	0	0
3841	4913	10.2	0	2	392	Hugo	Enonvesi	2	1D0	0	0	0
2801	5357	11	0	4	784	Marie	Enonvesi	2	1D0	0	0	0
2496	3957	12	0	6	1176	Thomas	Enonvesi	2	1D0	0	16	16
2053	3915	13	0	6	1176	Wolfgang	Enonvesi	2	1D0	0	23	23
570	4373	14	0	1	196	Alphonse	Enonvesi	2	1D0	0	0	0
5338	4511	15	0	2	392	Ida	Enonvesi	2	1D0	0	0	0
8041	4678	16	0	5	980	Francois-Regis	Enonvesi	2	1D0	0	0	0
6696	7574	17	0	1	196	Berthe	Enonvesi	2	1D0	0	0	0
7874	6493	18	0	4	784	Nigel	Enonvesi	2	1D0	0	0	0
7001	5662	19	0	2	392	Jacques	Enonvesi	2	1D0	0	0	0
7417	5773	20	0	1	196	Claude	Enonvesi	2	1D0	0	0	0
5338	5440	21	0	4	784	Roger	Enonvesi	2	1D0	0	0	0
2122	6438	22	0	1	196	Fernand	Enonvesi	2	1D0	0	0	0
8886	5689	23	0	2	392	Manville	Enonvesi	2	1D0	0	0	0

- identification by image blinking (manual)
- > 31,000 particles collected (~ 270 analyzed)
- Sep. 30, 2016 : dust returned to the comet S

Different grain typologies

COSIMA

(Langevin et al. 2016)

COSIMA

Langevin+2016 Merouane+2016

Compact grains of COSIMA ≡ fluffy grains for GIADA...

Tensile strength

- Most particles fragmented upon impact
- low tensile strength ~ 1000 to 2000 Pa

After pressing Andrzej

After neg. spectra on Andrzej

After pos. spectra on Andrzej

After neg. spectra on Sigrid

After pos. spectra on Sigrid

Average grain size distribution*

LCM

lisa

GWF

CSNSM

A München

Universität

* time interval : Aug. 11 to Oct. 24 2014

FMI

IAS)

MPE

vH&S @esa

COSIMA size distribution

Halley (VEGA) PUMA experiment

(Jessberger et al. 1988 Lodders et al. 2010)

Halley (VEGA) PUMA experiment

(Jessberger et al. 1988 Lodders et al., 2009)

Dust Composition by COSIMA

- T inside COSIMA ~ 10°C -> no icy grains
- Mass spectrometer = TOF-SIMS
 - Mass resolution of ~ 1400 @ 100u
 - Detection of position or negative SI
 - Only surface analysis (contamination problem!
 ⁽⁸⁾
- Organics and inorganics :
 - Calibration for organics (Le Roy+2015) mostly chemical compounds
 - Calibration for inorganics (Krueger+2015) only for positive SI

Composition of Dust w/ COSIMA – PhD A. Bardyn

https://cnes.fr/sites/default/files/ drupal/201702/default/ cnesmag_71_fr_websimple.pdf

She was 5 at the time of selection of Rosetta!

Slides on compositions removed (not published)

- Very low albedo (0.060 ± 0.003 at 0.55 um), Red slope in NIR then flat spectrum, Broad absorption ~ 3.2 um
- ⇒ Surface (a few 100s um) : T nucleus ~ 180-230K
- \Rightarrow No water ice signature (1.5, 2, 3 um bands) (10m scale) upper limit 1%
- Darkening : sulfides and Fe-Ni alloys ? (also red visible slope)
- ⇒ Polyaromatic organic solids

0.1

 \Rightarrow 3.2 um : OH in COOH group? NH₄+?

rosetta

Comp. dust (ROSINA)

(Wurz et al. 2015)

Hint for a CAI in 67P/C-G (COSIMA)

lisa

LIWF

ü

CSNSM Universität 🏠 München

🗰 FMI 🥿 👘 vH&S @esa 🌉 🕬 🕘

IAS . ME

Organics : Instrument calibration

- Before the comet: building a reference library for this specific instrument
- ➢ Rationale :
 - Previous observations
 - Lab analogs
 - Astrophysical analogs
 - Quantification

Le Roy et al. (2012) PSS, 65, 83-92 and Le Roy et al. (2015) PSS, 105, 1-25

(N. Fray Comets2016 conf.)

MPI

23 different "semi-volatile" molecules
 Different chemical familles
 Different structures

COSIMA

Instrument calibration : some positive ion mass spectra

(N. Fray Comets2016 conf.)

Le Roy et al. (2012) & Le Roy et al. (2015)

Positive ion mass spectra of cometary particles

✤ Detection of numerous elements and of organic ions (C⁺, CH⁺, CH₂⁺, CH₃⁺,...)

🗰 FMI 🥂 🕬 vH&S 💿 esa 🌉 🕬

 Detection of ions containing carbon and originating from the comet, only at low masses (m/z < 50). The mass spectra of cometary particles are different from the calibration mass spectra presented before !

lisa

No detection of "semi-volatiles" organic molecules, so far...

MPE

(N. Fray Comets2016 conf.)

GWF CSNSM Universität

Positive ion mass spectra of cometary particles

Degues found so far to gnatures of the 67P he insoluble organic

The best analogues found so far to the organic signatures of the 67P particles are the insoluble organic matter (IOM) samples extracted from carbonaceous chondrites (such as the Orgueil and Murchison meteorites)

⇒ Detection of refractory
 high-molecular-weight
 organic matter in the particles
 of 67P !

The (CH_x⁺ / C⁺) ionic ratio are higher on the cometary particles than on the IOM sample

Universität 🖒 München

CSNSM

 ⇒ H/C elemental ratio can be higher in the cometary refractory organic matter than in meteoritical IOM.

(Fray et al. 2016)

MP

C/N? Negative ion mass spectra of cometary particle

lisa

LIWE

CSNSM

Universität 🖒 Müncher

- C₂⁻ and CN⁻ are detected in the negative spectra of cometary particles (as well as C⁻, CH⁻, CH₂⁻, C₂H⁻,...).
- CN⁻ and C₂⁻ ions enables the measurements of the N/C elemental ratio in cometary particles.

🗰 FMI 🥿 🕬 vH&S 💿 esa 🌉 🕬

MP

Slides on N/C removed (not published)

rosetta

Summary

- Dust instruments : more than 30,000 particles collected/detected from <1 μm (MIDAS) to > 500 μm (COSIMA, GIADA)
- COSIMA : Flocculent particles (for all sizes), inorganic composition compatible with presence of anhydrous minerals (OI, Px, Fe-sulfides)
 - similarity with IDPs/MMs collected on Earth
- Composition for inorganic elements ~ chondritic
- Hint for the presence of CAI minerals
- COSIMA analyses of organics not obvious :
 - Organic matter ~ meteoritic IOM?
 - atomic C/Si (Bardyn et al. 2017 sub)
 - atomic N/C (Fray et al. 2017 in prep)
 - Composition compatible with low surface albedo : refractory organics with minerals (silicates, Fe-sulfides)
- COSIMA: a lot more data to analyze...