Mitigating the ill-posedness of first-arrival traveltime tomography using Nashington, D.C. | 10-14 Dec 2018 slopes: application to crustal imaging from OBS data (Abstract S53C-0410)

S. Sambolian¹, B. Tavakoli F.¹, A. Górszczyk², S. Operto¹, A. Ribodetti¹ and J. Virieux³

¹ Univ. Côte d'Azur - Geoazur - CNRS - IRD - OCA, ² Institute of Geophysics Polish Academy of Sciences, ³ Univ. Grenoble Alpes - ISTerre

I - Context

• First-arrival traveltime tomography (FATT) models are often used in more resolving imaging methods such as full-waveform inversion (FWI). However FATT suffers from ill-posedness in terms of nonuniqueness of the solution due to the limited information carried out by the traveltimes.

Figure 1: Traveltimes + slopes picked on a OBS gather.

• We promote the use of the traveltime perturbation with respect to the source/receiver positions (slope tomography - ST) as a supplement to the first-arrival traveltime (Tavakoli F. et al., 2018).

II - Role of slopes

- Slowness vector sensitive to velocity gradient perturbations: $\delta p = -\int \delta(\nabla v/v^2) dl$ (Hu et al., 1994).
- Slope straightforwardly accessible in dense acquisition or multi-component data. Why not use it?

Figure 2: Sensitivity test. Two parameters $(v, \nabla v)$ problem estimation. Contours define the cost function isovalues. Full coverage (top) and partial coverage (bottom).

✓ Traveltimes with slopes \Rightarrow Improved sensitivity.

• ST implemented with eikonal solvers and the adjoint-state method (Taillandier et al., 2009).

III - Exploration scale benchmark: Overthrust model

• EAGE/SEG Overthrust model: $20km \times 4.5km$ target extended by 25km laterally on each side for tomography. Soft regularization for resolution maximization. Frequency-domain FWI on the target (3 - 20 Hz) using tomography results as initial models.

Figure 3: Dense acquisition case (100m receiver spacing). FATT and ST results and their respective FWI.

Figure 4: Coarse acquisition case (2km receiver spacing). FATT and ST results and their respective FWI.

- ✓ First-arrival traveltime + slope tomography.
- ← High resolution model, hence better FWI.
- ↑ More resilient to illumination/coverage issues.
- X First-arrival traveltime tomography.
- ← Artifacts due to channeling in structures .
- ↑ Extremely hampered by lack of regularization.

Conclusion & Perspectives

The differential information carried out by slopes lead to more resilient inversions to coverage and illumination. Slope tomography models are more resolved, hence provide more suitable initial guess for full-waveform inversion.

Recent developments around multi-component stations motivate the extension of our approach to late arrivals by source and receiver slope inversions.

References

- Gorszczyk, A., Operto, S., and Malinowski, M. (2017). Towards a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited. *JGR: Solid Earth*, 122(6):4601–4630.
- Hu, G., Menke, W., and Powell, C. (1994). Polarization tomography for P wave velocity structure in southern california. Journal Geophysical Research, 99:15 245-15 256. Taillandier, C., Noble, M., Chauris, H., and Calandra, H. (2009). First-arrival travel time tomography based
- on the adjoint state method. Geophysics, 74(6):WCB1-WCB10. Tavakoli F., B., Operto, S., Ribodetti, A., Sambolian, S., and Virieux, J. (2018). Anisotropic first arrival slope
- and traveltime tomography (FASTT). In Expanded Abstracts, Annual EAGE Meeting (Copenhagen). This study was granted access to the high-performance computing facilities of the SIGAMM (Observatoire de la Côte d'Azur) and the HPC resources of CINES/IDRIS/TGCC under the allocation 046091 made by GENCI.
- We also thank the SEISCOPE consortium (http://seiscope2.osug.fr), sponsored by AKERBP, CGG, CHEVRON, EQUINOR, EXXON-MOBIL, JGI, PETROBRAS, SCHLUMBERGER, SHELL, SINOPEC and TOTAL

IV - Crustal scale application: eastern Nankai Trough (Tokai area)

• Nankai Trough case - SFJ Experiment: Profile of 100 OBSs spaced 1km apart cross-cutting the margin. Aligned 140km shot profile with 100m shot interval.

Figure 5: (A) Geodynamical setting of the Nankai trough area and (B) a zoom on the shot profile (OBS array in red).

• Total of 124248 previously picked first-breaks (Gorszczyk et al., 2017). Slopes calculated by finitedifference from finely interpolated traveltimes.

Figure 6: Data misfit at the initial (top) and final (bottom) stages of traveltime + slope tomography (ST).

Figure 7: Tomography and FWI results for FATT (left) (Gorszczyk et al., 2017) and the proposed ST (right).

✓ Good data fit of ST starting from a crude model. ✓ ST provides an intermediary resolution between FATT and FWI especially in shallow structures.

Kirchhoff migration of an aligned MCS profile.

Figure 8: Images highlighting the geological features recovered through FWI. (A) ST+FWI model superimposed by its reflectivity. (B) Same as (A) but overlain by a

Figure 9: Comparison between observed and modeled seismograms of OBS 17 for the models of figure 7.

Figure 10: Wavelets estimated from the models of Figure 7 by waveform inversion.

- ✓ Similar FWI results in both cases. Complex FWI worklow with 1.8Hz starting frequency. Could ST models ease up the exhaustive tuning of FWI?
- ✓ Quality control by seismic modeling and wavelet estimation confirm the improved resolution of ST model with respect to FATT counterpart.