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The Equivalence Principle

The present situation

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence
Principle

Universality of Free Fall

Universality of Gravitational
Redshift

Local Lorentz Invariance
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The Equivalence Principle

Description of tests of the universality principles

Purpose: parametrization of deviations, comparison of different experiments

Haugan formalism (Haugan, AP 1979)

Ansatz: effective atomic Hamiltonian (from modified Dirac and modified Maxwell)

H = mc2 +
1

2m

(

δij +
δm

ij
i

m

)

pipj +m

(

δij +
δmgij

m

)

U ij(x) + . . .

additional anomalous spin terms (CL, CQG 1996, SME)

additional anomalous charge terms (Dittus, C.L., Selig, GRG 2006)

can calculate (all quantities depend on all anomalous parameters)

acceleration −→ WEP tests

frequency comparison −→ redshift tests

spin dynamics
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Implications of the UFF

Consequences of the UFF

Trajectories

Trajectory of a particle x = x(p; t)
p = particle parameter (e.g. mass, charge, etc)

UFF ⇒ trajectory does not depend on particle parameters x = x(t)
This is already the geometrization of the gravitational interaction

The set of all trajectories is a path structure

Order of equations of notion / Cauchy problem

Newton’s setup: trajectory determined through

initial position x0 = x(t0) and
initial velocity v0 = ẋ(t0).

⇒ ordinary differential equations of second order: ẍµ = Hµ(p;x, ẋ)

Question: Why the fundamental equations of motion are of second order?
Equivalent to questioning Newton’s second axiom

C. Lämmerzahl (ZARM, Bremen) On the Equivalence Principle Nice, October 16, 2013 7 / 32



Implications of the UFF

Consequences of the UFF

UFF + second order

equation of motion
ẍµ = Hµ(x, ẋ)

equation of motion does not depend on particle parameter p

equation of motion is of second order

this defines a curve structure

Gravity cannot be transformed away:

Acceleration towards the center of Earth
depends on horizontal velocity

exists no inertial system

Implies several effects: G(T ), violation of
UGR (compare Hohensee, Müller, PRL
2013), ...

a1

a2

v
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Implications of the UFF

The free fall: The notions

Gravity can be transformed away

∃ coordinate system ∀ particles : ẍ = 0
Then in an arbitrary coordinate system

ẍµ = −Γµ
ρσ(x)ẋ

ρẋσ

autoparallel equation, projective structure (Ehlers, Pirani, Schild 1973, Coleman &
Korte, many papers in the 80’s)

Need still relation between the connection Γµ
ρσ(x) and the metric gµν

properties of light and clocks as formulated in EPS axiomatics (Ehlers, Pirani,
Schild 1993)
free turnability (Helmholtz, Lie)

result: Riemannian geometry

How to test whether gravity can be transformed away?

equivalent to questioning Newton’s first axiom
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Order of equations of motion

Order of equation of motion?

Usual framework

L = L(t,x, ẋ) ⇒
d

dt
p = F (t,x, ẋ) with p = mẋ

more general equations?

p = mẋ is a constitutive law. Can be more general (as is many cases)

p = f(ẋ, ẍ,
...
x , . . .)

then higher order equations of motion

Influence of external fluctuations (e.g. space–time fluctuations, gravitational
wave background, Göklü, C.L., Camacho & Macias, CQG 2009): generalized
Langevin equation with extra force term

∫ t

0

C(t− t′)ẋ(t′)dt′
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Order of equations of motion

Order of equation of motion?

Generalized framework

L = L(t,x, ẋ, ẍ) ⇒
d2

dt2
(ǫẍ) = F (t,x, ẋ, ẍ,

...
x)

Our specific model

Gauge procedure in order to invent structure of interactions

L(t,x, ẋ, ẍ) = L0(t,x, ẋ, ẍ) −q0Aaẋ
a

︸ ︷︷ ︸

1st order gauge fields

+ q1Aabẋ
aẋb

︸ ︷︷ ︸

2nd order gauge fields

with (Pais–Uhlenbeck oscillator)

L0(t,x, ẋ, ẍ) = −
ǫ

2
ẍ2 +

m

2
ẋ2

ǫ additional new particle parameter, dimǫ = kg s2

ǫQG ∼ mPlanckt
2
Planck ∼ 10−95 kg s2 ǫCe ∼ mCet

2
Ce ∼ 10−71 kg s2
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Order of equations of motion

Equation of motion

simplest case: constant electric field

ǫ
....
x +mẍ = qE0

solution in 1D with initial conditions x(0) = 0, ẋ(0) = 0, ẍ(0) = 0, and
...
x (0) = 0

x(t) =
q

m
E0

(
1

2
t2 +

ǫ

m
(cos (ωt)− 1)

)

small deviation

ẋ(t) =
q

m
E0

(

t−

√
ǫ

m
sin (ωt)

)

small deviation

ẍ(t) =
q

m
E0 (1− cos (ωt)) O(1) deviation

...
x (t) =

q

m
E0

√
m

ǫ
sin (ωt) ω =

√
m

ǫ
large deviation

zitterbewegung

Limit ǫ→ 0 exists for x and ẋ, not for
...
x
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Order of equations of motion

Search for ǫ

Accelerated flight

Flight through accelerator

〈ẋ(L)〉 − ẋ0

ẋ0
=

ǫ

4m

ẋ20
L2

− +

L

Ion interferometric measurement of acceleration

phase shift
∆φ = A(ω)k · ẍ(ω)T 2

with transfer function

A(ω) = C
sin2(ωt)

ω2
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Order of equations of motion

Search for ǫ

Electronic devices

Zitterbewegung of a charged particle induces voltage noise

1

2
C〈U2〉t = m〈ẋ2〉 =

1

2
ǫ
( q

m
E0

)2

R

C

I

General estimate: ǫ ≤ 10−50 kg s2.

Application to mirrors in gw interferometers?

Adding a small higher derivative term is a mathematical method to analyze
differential equations.

C.L. & Rademaker, PRD 2012

higher order time derivative in Schrödinger C.L, Bordé 2000
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Finsler geometry – Existence of inertial systems

Reasons for Finsler geometry

Why Finsler?

geometry of field equations

EPS axiomatics (Ehlers, Pirani & Schild 1973)

dynamical model for respecting UFF but violating Einstein’s elevator

from Quantum Gravity (Girelli, Liberati & Sindoni, PRD 2003)

VSR (Gibbons, Gomis & Pope, PRD 2007)

elegance of Lagrange and Hamilton formalism

nontrivial generalization of Riemannian geometry

example for violation of Schiff’s conjecture

and Finsler modifications not covered by PPN test theory

Two aspects

Finsler geometry in the tangent space = Finsler relativity

Finsler geometry of manifold = Finsler gravity
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Finsler geometry – Existence of inertial systems

Finsler geometry

Finsler space

Finsler length function

dl2 = F (x, dx) , F (x, λdx) = λ2F (x, dx)

Finsler metric tensor fµν(x, dx) is defined as

dl2 = gµν(x, dx)dx
µdxν , where gµν(x, y) =

1

2

∂2F (xk, ym)

∂yµ∂yν

Light cones

Light cone defined by
ds2 = dt2 − dl2
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Finsler geometry – Existence of inertial systems

Finsler geometry

Euclidean light cone Riemannian light cone Finslerian light cone

There is no coordinate transformation so that the Finslerian light cone can be
locally written in Minkowskian form 0 = −dt2 +

(
dx2 + dy2

)
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Finsler geometry – Existence of inertial systems

Finsler geometry

Geodesics

δ

∫

ds = 0 ⇒ 0 =
d2xµ

ds2
+ { µ

ρσ } (x, ẋ)
dxρ

ds

dxσ

ds

with

{ µ
ρσ } (x, ẋ) = gµν(x, ẋ) (∂ρgσν(x, ẋ) + ∂σgρν(x, ẋ)− ∂νgρσ(x, ẋ))

UFF true, but gravity cannot be transformed away (no Einstein elevator)

violates LLI: counterexample to Schiff’s conjecture
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Finsler geometry – Existence of inertial systems

Deviation from Riemann geometry

How to describe deviation from Riemannian geometry? (test theory)

Deviation from Riemann (C.L., Lorek & Dittus, GRG 2009)

Special case: “power law” metrics (Riemann)

dl2 = (gµ1µ2...µ2n
(x)dxµ1dxµ2 · · · dxµ2n)

1

r

From any given Riemannian metric gij and a tensor φi1···i2r we can construct
a Finslerian metric by

Dr(dxi) =
(
gijdx

idxj
)r

+ φi1···i2rdx
i · · · dxi2r

=
(
gi1i2 · · · gi2r−1i2r + φi1···i2r

)
dxi · · · dxi2r

any deviation from Riemann encoded in coefficients φi1···i2r

small deviation given by small φi1···i2r ≪ 1, then

D(dxi) = gijdx
idxj

(

1 +
1

r

φi1···i2rdx
i · · · dxi2r

(gkldxkdxl)
r

)
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Finsler geometry – Existence of inertial systems

Testing Finsler

1 test of Finslerian Special Relativity:

Michelson–Morley type test (C.L., Lorek, Dittus, GRG 2009)
quantum tests are under consideration (Itin, C.L., Perlick, in preparation)

2 test of Finslerian gravity: Finslerian deviation from given solutions of Einstein
equation

First model: Finsler modification of Schwarzschild

for hµν Schwarzschild metric: simplest Finsler modification

2L =
(
htt + c2ψ0

)
ṫ2 +

(
(hijhkl + φijkl) ẋ

iẋj ẋkẋl
) 1

2

by spherical symmetry

φijkl = ψ1ṙ
4 + ψ2r

2ṙ2(sin2 ϑϕ̇2 + ϑ̇2) + ψ3r
4(sin2 ϑϕ̇2 + ϑ̇2)
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Finsler geometry – Existence of inertial systems

Solar system: Approximation, Specifications

linearization with respect to Finslerian perturbations

restriction to equatorial plane

then

L =
1

2

(

(1 + φ0)httṫ
2 + (1 + φ1)hrr ṙ

2 + r2ϕ̇2 + φ2
hrrr

2ṙ2ϕ̇2

hrr ṙ2 + r2ϕ̇2

)

with

φ0 :=
c2

htt
ψ0 modifies temporal metric

φ1 :=
ψ1

2h2rr
modifies radial metric

φ2 :=
hrrψ2 − ψ1

2h2rr
is “Finslerity” – not covered by standard PPN ansatz
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Finsler geometry – Existence of inertial systems

Kepler’s third law

for circular orbits

r3

T 2

(

1−
c2r2

2GM

(

φ0

(

1−
2GM

c2r

))
′

)

=
GM

4π2

from observations

r1

∣
∣
∣
∣

φ0(r2)− φ0(r1)

r2 − r1

∣
∣
∣
∣
≤ 10−16

for all r1 and r2 between Mercury and Neptune
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Finsler geometry – Existence of inertial systems

Radial acceleration

acceleration from rest

d2r

dτ2
= −

GM

r2

(

1− φ1 − φ′0r

(

1−
c2r

2GM

))

from observations
|φ1(r)| ≤ 10−6

so far no effect related to Finslerity
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Finsler geometry – Existence of inertial systems

Effects for Finslerity

for access to the Finslerity one needs ϕ̇ 6= 0 and ṙ 6= 0

this is for light deflection, gravitational time delay, perihelion shift

calculations are a bit involved ....

light deflection
|104 φ1 + φ2| ≤ 50

will be improved by Gaia
gravitational time delay

|20φ1 + φ2| ≤ 10−3

perihelion shift
|φ2| ≤ 10−3

effect most pronounced for perihelion shift (periodic motion)

C.L., Perlick, Hasse: PRD 2012
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Finsler geometry – Existence of inertial systems

Quantum mechanics in Finsler space

Finslerian Hamilton operator

H = H(p) with H(λp) = λ2H(p)

“Power–law” ansatz (non–local operator)

H =
1

2m

(
gi1...i2r∂i1 · · · ∂i2r

) 1

r

Simplest case: quartic metric

H =
1

2m

(
gijkl∂i∂j∂k∂l

) 1

2

Deviation from standard case

H = −
1

2m

(
∆2 + φijkl∂i∂j∂k∂l

) 1

2

= −
1

2m
∆

√

1 +
φijkl∂i∂j∂k∂l

∆2
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Finsler geometry – Existence of inertial systems

Quantum mechanics in Finsler space

H = −
1

2m
∆

(

1 +
1

2

φijkl∂i∂j∂k∂l

∆2

)

Hughes–Drever: Htot = H + σ ·B

Atomic interferometry, atom–photon interaction

δφ ∼ H(p+ k)−H(p) =
k2

2m
+

1

m

(

δil +
φijklpjpk

p2

)

pikl

modified Doppler term: gives different Doppler term while rotating the whole
apparatus (even in Finsler light still propagates on straight lines, anisotropy –
deformed mass shell)

incorporation of gravity needs relativistic framework
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Summary and Outlook

Summary

discussion of underlying assumptions influencing the meaning of UFF and
EEP

order of equation of motion

Finsler geometry as example for no inertial system / violation of local
Minkowski

no test theory so far for Finslerian modification of gravity, needs
considerations beyond PPN

Finslerian modification of Schwarzschild

Solar system effects

Finsler is further example for violation of Schiff’s conjecture
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Summary and Outlook

Outlook

Earth–Moon system in field of Sun, should lead to extra polarization,
comparison with LLR data

Finslerian extension of Kerr

Klein–Gordon in Finsler in order to discuss coupling of Finsler gravity to
quantum mechanics F (∂)ϕ+m2ϕ = 0

Maxwell equations in Finsler geometry Hν(∂)Fµν = jµ (C.L., Perlick, Hasse,
PRD 2012)

Hydrogen atom in Finsler geometry (Itin, C.L., Perlick, in preparation)
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Summary and Outlook

Summary

Thank you!

Thanks to

H. Dittus

E. Göklü

D. Lorek

H. Müller

V. Perlick

P. Rademaker

DLR

DFG

Research Training Group
“Models of Gravity”

Center of Excellence QUEST
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