

Novel Systematic Errors in Microwave Space Clocks and Optical-Lattice Clocks

- Accuracy Evaluation of PHARAO
 - Microwave Lensing (aka Microwave photon recoil) frequency shift.
 - 1st order Doppler shifts Cavity phase
 - Cold Collision shift

Cladé..., Biraben, PRL '06

 Clock frequency shift from ultracold Fermion collision

On Earth:
$$\sigma_y < 4.10^{-13} t^{-1/2}$$
, $\sigma_B \sim 10^{-15}$
In space: $\sigma_y < 10^{-13} t^{-1/2}$, $\sigma_B \sim 10^{-16}$

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	440	0.4
Blackbody radiation	-170	0.5
Ultracold collisions	-25	1.2
Cavity Phase	0.3	1
Microwave Lensing		1.4
Total		2.2

Phil Peterman, Kurt Gibble, Philippe Laurent, Christophe Salomon Support from CNES, ESA, CNRS, NASA, LNE, SYRTE, ENS, Penn State, UPMC, & la Ville de Paris.

Wicht, ... Chu, PRA '05

10/15/2013-2

Transverse (Microwave) Photon Recoils?

There is no grating in the z direction. → No recoil in z direction. "Microwave" Stern-Gerlach regime:

Same problem for microwave clocks: The dipole force of the microwave field acts as a lens on the atomic wavefunction.

KG PRL '06

10/15/2013-3

Transverse (Microwave) Photon Recoils?

There is no grating in the z direction. \rightarrow No recoil in z direction.

"Microwave" Stern-Gerlach regime:

Same problem for microwave clocks: The dipole force of the microwave field acts as a lens on the atomic wavefunction.

PHARAO Microwave Lensing

$$\delta P = \frac{1}{2N} \int \left[\left| \left\langle 2 \left| \Psi \right\rangle \right|^2 - \left| \left\langle 1 \right| \Psi \right\rangle \right|^2 \right] \sin \left[\theta(r_2) \right] W_d(\vec{r}_d) dz_2 d\vec{r}_2$$

•For slow velocities & $\frac{\delta v}{v} = \frac{\pi}{2} \frac{t_1}{t_2} \frac{v_R}{v} \approx 1.2 \times 10^{-16}$

Analytic, with usually quite good approximations.
Including selection aperture, final clock aperture, linear deflections (k²), and uniform detection:

With a full FEM calculation, uncertainty is trivially small, <3×10⁻¹⁷.
Include lower aperture, higher k. (Need to add detection inhomogeneities & rounded corners of apertures.)

KG PRL '06 Li, KG, & Szymaniec Metrol. '11 Weyers, Gerginov, Nemitz, Li, KG, Metrol. '12

		÷	
-16		\wedge	\wedge
	Λ	\sim	\frown
		dP	A d₽+
$\frac{\delta v}{v}$, -≈1.2	to 1.3>	<10 ⁻¹⁶

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	440	0.4
Blackbody radiation	-170	0.5
Ultracold collisions	-25	1.2
Cavity Phase	0.3	1
Microwave Lensing	1.2	0.3
Total		1.7

PENNSTATE **Doppler Shifts - Cavity Phase** \tilde{H}_0 1st order Doppler shift: motion with spatial phase variation of an electromagnetic field. - TE₀₁₁ cylindrical cavity $\delta v = \frac{\Phi_1 - \Phi_2}{\pi} \Delta v$ Standing wave + traveling wave \rightarrow spatially varying phase $\vec{H} = \vec{H}_0 + i\vec{g} \qquad \vec{E} = i\vec{E}_0 - \vec{f} \qquad \Phi = -\frac{g_z(\vec{r})}{H_{0z}(\vec{r})}$ Recent stringent test with fountains. PHARAO acts as a fountain fed from top endcap. - Large longitudinal phase gradient \rightarrow power dependence. Large 3D FEM calculations,1 TB RAM Dense, adaptive mesh, solve for H₀ and g separately Calculate longitudinal phase shifts (m= 0 & 2). Measure phase gradients by tilting (m=1).

Li & KG, Metrologia '04 & '10, Li, KG, Szymaniec, Metrologia '11 Guéna, Li, KG, Bize, Clairon, PRL '11. Weyers, Gerginov, Nemitz, Li, KG, Metrol. '11

PENNSTATE

Ultracold Collision Shift & State Selection

- Shot-noise-limited → operate at n & n/4.
- Need same density distribution for density extrapolation, DCP, & Microwave lensing.

PENNSTATE

7

KG & Chu, PRL '93

Ultracold Collision Shift & State Selection

- Cylindrical cavity with rectangular aperture.
- FEM models of PHARAO Selection cavity.

 Need same density distribution for density extrapolation, DCP, & Microwave lensing.

Hazlett, Zhang, Stites, KG, O'Hara PRL '13

Hazlett, Zhang, Stites, KG, O'Hara PRL '13

Hazlett, Zhang, Stites, KG, O'Hara PRL '13

Microgravity Cd Lattice Clock

- Hg & Cd have small BBR shifts & similar level structures.
 - less repumping
- 2 fermionic spin ½ isotopes, ¹¹¹Cd and ¹¹³Cd – selectability of ultracold collision scattering lengths.
 - Bosons: ¹¹⁰Cd, ¹¹²Cd, ¹¹²Cd, ¹¹⁴Cd & ¹¹⁶Cd.
- Wavelengths and sideband cooling are easier for Cd but ³P₁ MOT is harder than Hg.

PENNSTATE

Binnewies, ... Riehle, Helmcke, Rasel, Ertmer PRL '01 Curtis, Oates, & Hollberg, PRA '01 Friebe, ... Ertmer ... Rasel, New J. Phys. '11

