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Testing the universality of free fall by means 
of differential accelerometers in space  

Galileo Galilei       « Free fall » in space Microscope 

sensor 1 

sensor 2 

differential accelerometer 

1 differential accelerometer =  2 sensors (test masses)   
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« applied » accelerations… 

Applied acceleration 

… equilibrated by the measured 
« electostatic » acceleration 
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Differential acceleration between two test masses 

The potential EP violation signal is their but: 
 
•  We do not measure the difference of acceleration but we compute the difference of two measurements ! 
 
•  Each of this measurement is affected by the sensor characteristics 
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@fep = forb + fspin in the instrument frame 
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Sensor model 
• sensor (test mass) k

• theoretical acceleration (input):

�!� (k)

• measured acceleration (output):
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DC part of the 
acceleration not 
known precisely 

Scale factors 
+ axis coupling 
(symmetric matrix) 

Test mass rotation 

Quadratic terms 
Negligible (will be 
checked by in 
flight calibration) 

Angular to linear 
acceleration coupling 
Negligible because dΩ/dt≅0 

[M](k) [⇥](k) = [Id] + [dA](k)
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The differential measured acceleration 
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observed or/and computed

negligible at Fep

Target: 10-15 accuracy ó 8 10-15  ms-2 in acceleration 
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The fep frequency 

•  The EP signal, collinear to the gravity vector, follows the direction  
of the Earth centre, seen from the satellite. 
 

•  This direction rotates at the orbital frequency and,  
if the satellite is not rotating, the EP signal has the frequency 
fep = forb which will be well determined 
 

•  If the satellite rotates, the signal is modulated  
and the EP signal has the frequency fep = forb + fspin 

•  This fact is used to 
•  Optimize the accuracy of the experiment around the fep frequency 
•  To discriminate the EP signal from some other perturbing signals 
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Needs for calibration 
Gravity gradient 
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Auxiliary data required 

g : gravity acceleration 
      at the instrument position
      projected in the instrument frame 

S : gravity gradient projected in the instrument frame 
      + symetric part of the gradient of inertia

Ω : angular velocity
Ω : angular acceleration

Requires a gravity model (mainly Earth) 

Requires the instrument position 

Requires the instrument orientation 
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Orbite restitution   
TijΔ j =

∂2Vg
∂xi ∂x j

Δ j  must be substracted to the measured acceleration

Err (TijΔ j ) = TijErr(Δ j )+
∂3Vg

∂xi ∂x j ∂xk
Δ jErr (position) 

Δ j =O(20µm) and frequency considerations lead to the specifications :

Frequency Radial Tangent Normal
DC 100 m 100 m 2 m
fep 7 m 14 m 100 m

2 fep 100 m 100 m 2 m

3 fep 2 m 2 m 100 m

Not too stringent, in principle, with GPS but… 
… the computation must take into account the thrust on the satellite 
commended by the drag-free system. 

Performance evaluation è no problem 

Motivation: 
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Attitude 
Motivation: 
•  Projection of the gravity gradient in the instrument frame è attitude [A] 
•  Computation of the gradient of inertia è [In] =[A] [Ä]T=d/dt([Ω])+[Ω] [Ω] 

 

Ω@Fep@Fep <1.10-11  rd/s2   (inertial & rotating modes)

Ω@Fep <1.10-9  rd/s  (rotating mode)

1.10-9rd/s @Fepr is equivalent to an attitude stability of the instrument  
better than 0.16µrad 

This is a real challenge 

   m/s and  : that so 21610.2)^(^^ −≤ΔΩΩΔΩ
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Solution (courtesy P. Prieur, CNES) 
1 : on board attitude and angular acceleration control 

Hybridation of  
the star trackers (low frequencies) and  
the acceloremeter (high frequencies) 

Red : real time attitude performance 
Blue : a posteriori attitude knowledge 
           performance 
Above : versus time over 20 orbits 
Under : versus frequency 
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Solution (courtesy P. Prieur, CNES) 
1 : on board attitude and angular acceleration control 

Hybridation of  
the star trackers (low frequencies) and  
the acceloremeter (high frequencies) 

2 : on ground attitude restitution 
Red : real time attitude performance 
Blue : a posteriori attitude knowledge 
           performance 
Above : versus time over 20 orbits 
Under : versus frequency 

Hybridation ‘frequency by frequency’ 
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e = 0.005 
fep 

Correction of the gravity gradient effects 

Gravity gradient (20 mm) 

EP violation @ 10-15 

Corrected gravity gradient (0.1 mm) 

Exemple of calibration 
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Calibration of the other parameters 

E. Hardy thesis 
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Conclusion   

•  The MICROSCOPE mission is optimized to discriminate an EP signal 
at the fep frequency 

•  Measurement of environment data (position of the masses, position of 
the satellite, attitude, temperature…) are planed 

•  Dedicated calibration sessions have been designed and included in 
the mission scenario 

•  The performances are verified: 
–  At the sub-system level : 

•  Return from previous missions 
•  On ground tests 
•  Simulations 

–  At the global level : 
•  Analytical error budget => worst case (see P. Touboul) 

 
 

•  Numerical simulations (for calibration and EP test) è 0,3 10-15  

=> Monte Carlo simulations are planed  

Spin mode : 1,12 10-15 over 20 orbits and 0,66 10-15 over 120 orbits 
Inertial mode : 1,42 10-15 over 120 orbits 
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Thank you for your attention 
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Treatment of the data gaps 

•  Lack of data can exist due to accelerometer saturations or 
transmission problems 

•  The duration of the gaps could extend from 1s (frequently) to 1mn (up 
to once per orbit) and even more (rarely).  

•  This can increase the projection of some perturbations on the Fep 
frequency (cf presentation by E. Hardy) 

•  To limit this effect, different actions are planed (cf presentation by E. 
Hardy) 

–  To fill the short gaps by reconstructing the lacking data 
–  To “remove” a whole number of orbits in case of large gap  

•  The corresponding data will be well flagged 
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Difficulties : 

 - P non diagonal for non white noise 
 - Covariance matrix difficult to know accurately 

 - Even if known, heavy inversion (typical dimension = 1 000 000) 
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P : weight matrix =  inverse 
of the covariance matrix 

Example of equation to solve : 

How to handle the differential signal ? 
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First method 

A  X =   Y 
Discret filter 

(e.g. Butterworth passe-
band pass, order 4) 

AF  X =   YF 

Inversion 

F
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Second method 

A  X =   Y 
FFT + band selection 

Inversion in the frequency domain 

YAAAX TT ~~)~~( 1−=

YXA ~    ~ =

Transformation of the linear system 
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Simulations 


