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Amplitude interferometry pioneers 

 Stephan, inside the aperture, 1870 
 0.8 m 

 Michelson, outside the aperture, 1920 
 6 m 

 (HBT, 1965-72) 
 
 

 Labeyrie, outside the telescope, 1975 
 13 m 
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Why intensity interferometry  

 Science developments 
 Quantum physics 
 Astrophysical knowledge 

 Technology developments 
 Fast detectors 
 Radio technology 

 Light collectors 
 Fast electronics 
 Correlators  
 Coaxes  

 Human intervention not necessary (cf. Michelson’s eye) 
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Why revival  

 Science developments 
 Astrophysical knowledge 
 Photonics  
 Other fields of physics: particles, biophysics 

 Technology developments 
 Detectors: faster and redder 
 Electronics: faster and digital  
 Optics: fibres  
 Space  
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New possibilities  

 Science developments 
 Astrophysical knowledge 
 photonics 

 Technology developments 
 Detectors: faster and redder 
 Electronics: faster and digital  
 Optics: fibres  
 Space  

 New opportunities 
 Ĉerenkov arrays 
 Antarctica  
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Previous experiments (Technion) I 

 Theoretical studies 
 Ofir and Ribak: higher-order correlations 
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NSII performance: 0m star, 1 hr,  SNR=27  
bν = 100MHz, α = 0.2, Σ = 0.2, m = 1  

 bν → 1GHz, α → 0.8, Σ → 0.8, m=1 

4.91 

4.99 

bν = electronic bandwidth 
α = quantum efficiency 
Σ = system efficiency 
m = optical channels 

dishes 



Previous experiments (Technion) II 

 Theoretical studies 
 Ofir and Ribak: higher-order correlations 
 Klein, Guellman, Lipson: space 

 All wavelengths possible 
 Formation flight 

 Satellites orbits 
 Keeping constant baselines 
 Optimal fuel consumption 
 Control laws 
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Previous experiments (Technion) III 

 Theoretical studies 
 Ofir and Ribak: higher-order correlations 
 Klein, Guellman, Lipson: space intensity interferometry 

 Laboratory studies 
 Spektor, Lipson, Ribak 

 Blue LEDs metres from Fresnel lenses 
 Fast photomultipliers, lock-in amp. 
 2000’s correlation electronics: AD8302 
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Correlation at a distance 

 Asher Space Research 
Institute 
 Physics and Aeronautics 

 Distributed Space Systems 
Laboratory 
 ERC support 
 Air table, vehicle location 
 Dark room 

13 May 2014, Nice, France Workshop on Hanbury Brown & Twiss interferometry 11 



Scheme  
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Components  I 
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Light collector 

Photomultiplier 

Preamplifier 
+ transmitter  

Antenna  Common 
antenna  

Three 
receivers 

Tilt mechanism 

Rotation propellers 

0.95 GHz bandwidth 
@ 3.1, 4.2 & 5.9 GHz 



Components  II 
 Analogue-to-digital 

converters 
 Up to 5 giga-samples 

per second (GSPS) 

 
 
 

 Virtex-6 FPGA 
 Delay 
 Correlation  
 Integration  
 Transfer to host PC 
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Dark-room experiment  
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Blue LED + 
pin-hole 

Beam-splitter 
(non-polarising) 
Two channels 



Dark-room set-up  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Some experiments: switch A/D and correlator by fast scope and memory 
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Typical input 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Three channels (red – inactive) 
 LED: 415 nm. Power: 2.8 W. Pin-hole: 15 µm. H = 78 cm. D = 0 cm.  
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Electronic delay 
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Cable B is longer by 2.5m Cable A is longer by 2.5m Cables – Same length 
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Electronic delay 
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Maximum Correlation for different baselines Correlations for different baselines 
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Digital band-width 
 Short integration times 
 Effective continuous sample rates 
 Our setup: 3×500,000 samples / 0.8 s = 1.875 Msamples / s 
 HBT: 24 MHz × 2 = 48 Msamples / s 
 HBT integration time: 1.5 h 
 For the same number of samples we need to integrate for 38 h 
 Solution: clip measurements, use 1 bit correlation (not 10 bit) 
 Also: remove all mobile phone signals (use µ-metal shield) 
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Transmitting the intensities 
 Growing baselines, on the ground and in space 
 Coaxial transmission difficult or impossible 
 Fibre optics for stellar light transmission not likely 

 Limited space-bandwidth product: low efficiency 
 Delay still has to be performed electronically or 

mechanically 

 Can we compress the detected  currents? 
 We first check the method of Compressed Sensing 
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Compressed sensing principle 
 Original time trace 

 
 
 Requires dense sampling 

 

 After using the proper filter (e.g. low-pass, wavelets) 
 
 
 Allows sparser sampling 
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Compressed sensing: matrix notation 
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Sparse and Redundant Representation Modeling of Signals – 
Theory and Applications  
By Michael Elad 
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The correlation properties 
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m
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Taking a simple case 
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A simple case: Fourier domain 
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Poisson noise in Fourier domain 
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Other compression methods 
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Compression efficiency 
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Future directions 

 System improvement steps 
 Rewrite correlator to 1 bit to improve flow 
 Add third channel, test closure 
 Test on moving platforms 
 Test other compression options 
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Research directions 

 Use electronic analog correlation (still faster) 
 Use photonic correlation (e.g. HBT in OCT) 

 Nonlinear optics 
 Requires very narrow beams, optical delay lines 
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Summary  

 We built a lab system to test space HBT 
 Integration and testing proceeding 

 Checked the options of compressing data 
 Compressed sensing depends on reduced band-width 
 Requires widest band possible 
 Other compression methods useful at low flux 
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