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Outline of talk

0. General Introduction and Overview of the Problem

I. Coherence in Macroscopic Lasers

II.  Coherence in Micro- and Nanolasers

III. Statistical Mixture of Thermal and Coherent light

IV. Oscillations in Coherence Function

V. Additional Remarks
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Light-matter interaction

Brief reminder
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What is a laser?

Brief reminder
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What is a laser?

Cavity modes

Lasing mode

Resonance enhancement
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What is a laser?

Cavity modes

Leaky modes
Numerous!

Spontaneous
emission

High losses

“Macroscopic” laser
> 105 modes

  < 10-5
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What is a laser?

Nanolaser

Suppression of
Spontaneous

emission
Coherent 
Emission

+
Spontaneous

Emission

Limit:  1 mode
 = 1
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I. Coherence in Macroscopic Lasers

Experiments (and theory)

He-Ne  = 6328 Å

Cavity volume ~ 1 cm3

 < 10-8
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1967

Thermal light photocount statistics:  G
Laser light photocount statistics:  L
Superposition of thermal and laser light:  S

Statistics of Light
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1967

Evolution of the 
statistical photon

mixture

Statistics of Light
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19671967

Moment distributions
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1967

Moment distributions
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II.  Coherence in Micro- and Nanolasers

Experiments and theory

0.8 m <   < 1.5 m

Cavity volume < 10 m3

  > 10-4
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Threshold representation

“Threshold”

Coherence?

Power curves for small lasers
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Size “small” “medium“ “large”
d = 1.5 m d = 5 m d = 8 m

Q 1850 9000 19000

Power curves for small lasers
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Size “small” “medium“ “large”
d = 1.5 m d = 5 m d = 8 m

Q 1850 9000 19000

Correlations in small lasers
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Wiersig et al., Nature 460, 245 (2009)

For the larger laser the 
g(3)(0) function does not
match the theoretically

expected values

Coherence?

Correlations in small lasers
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Courtesy of X. Hachair

Blue

Green

Correlations in small lasers
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Correlations in small lasers
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Summary

● g(1)(t) shows very short coherence time 

● g(2)(0) remains above 1
drops below 1
shows strong photon bunching (g(2) > 1)

● g(3)(0) for larger, high Q, laser inconsistent with 
theoretical values for thermal light
1.5 m nanolaser:  unsatisfactory convergence

● g(4)(0) “constant” value (1.5 - 2) 

Correlations in small lasers
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III.  Statistical mixture 

of thermal and coherent light

Does it hold for nano- and microlasers?
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Statistical mixture
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Statistical mixture
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Statistical
mixture

Statistical mixture
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Technique borrowed from
Photon-correlation Fourier Spectroscopy

X. Brockmann et al., Opt. Expr. 14, 6333 (2006)
Compute normalized correlation:

+ h.c.

Measure average correlation in a scanning
Michelson interferometer

Interferometric measurements
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Chaotic field

Stable coherent field

Interferometric measurements
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Statistical mixture

Fluctuating coherent field

Interferometric measurements
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Photon-correlation Fourier spectroscopy

Interferometric measurements
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Summary

Contradicting information coming from two different experiments

1.  In the “intermediate threshold region” a statistical superposition 
of chaotic light (spontaneous emission) and coherent light (laser) 
is emitted by the device

2.  The light emitted by the device is coherent, but exhibits (strong) 
amplitude fluctuations

Comparison between the two experiments difficult:
Pulsed regime
Entirely different devices
Reproducibility of samples

Statistical superposition?
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IV. Oscillations in coherence function

Experiments and theory in

Microcavities and nanocavities
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Low Q cavity High Q cavity

Nanolaser

Coherent oscillations
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Microlaser

coherence
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Microlaser

Oscillations in coherence

Coherent oscillations
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Violation of Siegert relation 
(through population oscillations)

Numerical:  Rate Equations 
(discrete variables)

Coherent oscillations
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Experimental data from
Phys. Rev. A 85, 053811 (2012)

Rate equations simulations
(discrete variables)

Coherent oscillations
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Summary

Oscillations in coherence g(2)() appear both 
in (some) nanolasers 
in microlasers

Result from coherent oscillations between population and 
e.m. field

Can give rise to misinterpretation of g(2)() as imperfect
coherence

Coherent oscillations
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V. Additional remarks
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Origin of oscillations
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Atom/carrier number

Continuous approximation
Average values >> 1

Physical origin of coherent oscillations
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Atom/carrier number

Discrete states
Average values >> 1

Origin of oscillations

Physical origin of coherent oscillations
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Discrete states
Average values > 1
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Origin of oscillations

Physical origin of coherent oscillations
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Discrete states
Average values ~ 1

Origin of oscillations

Physical origin of coherent oscillations
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loss

Origin of oscillations

Physical origin of coherent oscillations
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Next step

Origin of oscillations

Physical origin of coherent oscillations
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Atom/carrier number

Discrete states
Average values ~ 1

Photon
loss

Next step

Origin of oscillations

Discrete process
responsible for

remnant of 
oscillation in a

coherent 
interaction

Physical origin of coherent oscillations
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Master equation approach

,

Neqs =  n s

Modeling small lasers
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Uniform random walk
on the grid defined by
the Master Equation

Pulsing regime

Phys. Rev. Lett. 102, 053902 (2009)

Modeling small lasers
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G.P. Puccioni and G.L. Lippi

Preliminary results

Physical modeling of small lasers
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G.P. Puccioni and G.L. Lippi

Preliminary results

Autocorrelations
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G.P. Puccioni and G.L. Lippi

Preliminary results

Spiking output
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G.P. Puccioni and G.L. Lippi

Preliminary results

Autocorrelations
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G.P. Puccioni and G.L. Lippi

Preliminary results

Autocorrelations
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From First Principles, Granular Modeling:

● Strong spiking regime

● g(2)(0) grows and then decreases

● Strong fluctuations in g(2)(0) before reaching coherent value

● g(3)(0) and g(4)(0) converge “later”

● Increased sensitivity to fluctuations in higher order 
correlations (especially g(4)(0))

Autocorrelations

Summary
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Power 
spectrum

Preliminary results

G.P. Puccioni and G.L. Lippi

Reproducing coherent oscillations
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Power 
spectrum

Preliminary results

G.P. Puccioni and G.L. Lippi

Reproducing coherent oscillations
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Power 
spectrum

Preliminary results

G.P. Puccioni and G.L. Lippi

Reproducing coherent oscillations
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From First Principles, Granular Modeling:

● Oscillations present in signal mimicking the physical process

● Power spectrum shows peak features

● Autocorrelation > 1  (coherent oscillations)

● Oscillations in correlation

● Higher order correlations more sensitive 
(in amplitude and shape)

Reproducing coherent oscillations

Summary
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Correlations widely used (and necessary) for characterizing 
coherence in micro- and nanolasers

Results strongly dependent on experimental system
(reproducibility of samples, intrinsic features ...)

Most small lasers are pulsed:  influence on correlations?

Problems with higher correlations

Coherent oscillations, statistical mixture of light ...

Many open questions

Conclusions
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Thank you for your attention!
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Nature 460
Wiersig et al.
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Nature 460
Wiersig et al.
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